AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (655.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Silver nanoparticles on UiO-66 (Zr) metal-organic frameworks for water disinfection application

Hui ChenChen QiuYiran JiangXinyu LiaoDan WuMofei ShenTian Ding( )
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Drinking water disinfection is an essential process to assure public health all over the world. In this study, silver nanoparticles (AgNPs) on UiO-66 (Zr) Metal-Organic Frameworks (Ag@UiO-66) is proposed as a potential water disinfection strategy. AgNPs are synthesized using polyvinyl pyrrolidone (PVP) as stabilizing agent, and sodium borohydride as reducing agent are subsequently embedded on UiO-66, a high-stability organometallic framework. The effect of premixing time, reaction time and reactant concentration on the loading rate of AgNPs on UiO-66 was investigated. The maximum load rate of AgNPs on UiO-66 could reach 13% when the premixing time is 3 h, the reaction time is 45 min and the concentration of AgNO3 is 10μg/mL. The formation of AgNPs loaded on UiO-66 was observed and confirmed with ultraviolet and visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM), infrared emission spectroscopy (IES) and X-ray diffraction (XRD) analysis. Ag@UiO-66 exhibited strong antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, with minimum inhibitory concentrations (MIC) of 64 and 128μg/mL, respectively. The germicidal efficacy of Ag@UiO-66 enhanced significantly as the temperature rose from 4 ℃ to 37 ℃. The results indicate that Ag@UiO-66 is potential candidate as a feasible water disinfection material.

References

[1]

S. Dwivedi, S. Mishra, R.D. Tripathi, Ganga water pollution: a potential health threat to inhabitants of Ganga basin, Environ. Int. 117 (2018) 327-338. https://doi.org/10.1016/j.envint.2018.05.015.

[2]

V. Girardi, K.D. Mena, S.M. Albino, et al., Microbial risk assessment in recreational freshwaters from southern Brazil, Sci. Total Environ. 651 (2019) 298-308. https://doi.org/10.1016/j.scitotenv.2018.09.177.

[3]
T. Huang, ed., Water pollution and water quality control of selected Chinese Reservoir Basins, Springer International Publishing, Cham, (2016) 155-168. https://doi.org/10.1007/978-3-319-20391-1.
[4]

T. Nakamura, H. Okawa, R. Hosokawa, et al., The sterilization of suspensions contaminated with microorganisms using ultrasound irradiation, Jpn. J. Appl. Phys. 49 (2010) 5. https://doi.org/10.1143/JJAP.49.07HE11.

[5]

K. Song, M. Mohseni, F. Taghipour, Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review, Water Res. 94 (2016) 341-349. https://doi.org/10.1016/j.watres.2016.03.003.

[6]

K.K. Jyoti, A.B. Pandit, Ozone and cavitation for water disinfection, Biochem. Eng. J. 18 (2004) 9-19. https://doi.org/10.1016/S1369-703X(03)00116-5.

[7]

S.D. Richardson, A.D. Thruston, T.V. Caughran, et al., Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine, Water Air Soil Poll. 123 (2000) 95-102. https://doi.org/10.1023/A:1005265509813.

[8]

J.P. Scott, D.F. Ollis, Integration of chemical and biological oxidation processes for water treatment: review and recommendations, Environ. Prog. 14 (1995) 88-103. https://doi.org/10.1002/ep.670140212.

[9]

B.S. Atiyeh, M. Costagliola, S.N. Hayek, et al., Effect of silver on burn wound infection control and healing: review of the literature, Burns 33 (2007) 139-148. https://doi.org/10.1016/j.burns.2006.06.010.

[10]

T.J. Berger, J.A. Spadaro, S.E. Chapin, et al., Electrically generated silver ions: quantitative effects on bacterial and mammalian cells, Antimicrob. Agents Chemother. 9 (1976) 357-358. https://doi.org/10.1128/aac.9.2.357.

[11]

K. Dunn, V. Edwards-Jones, The role of ActicoatTM with nanocrystalline silver in the management of burns, Burns 30 (2004) S1-S9. https://doi.org/10.1016/S0305-4179(04)90000-9.

[12]

C.L. Fox, Silver sulfadiazine - a new topical therapy for pseudomonas in burns: therapy of pseudomonas infection in burns, Arch. Surg. 96 (1968) 184-188. https://doi.org/10.1001/archsurg.1968.01330200022004.

[13]

H.J. Klasen, A historical review of the use of silver in the treatment of burns. Ⅱ. Renewed interest for silver, Burns. 26 (2000) 131-138, https://doi.org/10.1016/S0305-4179(99)00116-3.

[14]

T. Maneerung, S. Tokura, R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing, Carbohydr. Polym. 72 (2008) 43-51. https://doi.org/10.1016/j.carbpol.2007.07.025.

[15]

S. Silver, L.T. Phung, G. Silver, Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds, J. Ind. Microbiol. Biotechnol. 33 (2006) 627-634. https://doi.org/10.1007/s10295-006-0139-7.

[16]

J.S. Kim, E. Kuk, K.N. Yu, et al., Antimicrobial effects of silver nanoparticles, Nanomedicine 3 (2007) 95-101. https://doi.org/10.1016/j.nano.2006.12.001.

[17]

J.R. Morones, J.L. Elechiguerra, A. Camacho, et al., The bactericidal effect of silver nanoparticles, Nanotechnology 16 (2005) 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059.

[18]

O. Choi, K.K. Deng, N.J. Kim, et al., The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth, Water Res. 42 (2008) 3066-3074. https://doi.org/10.1016/j.watres.2008.02.021.

[19]

X. Li, J.J. Lenhart, H.W. Walker, Dissolution-accompanied aggregation kinetics of silver nanoparticles, Langmuir 26 (2010) 16690-16698. https://doi.org/10.1021/la101768n.

[20]

A. Slistan-Grijalva, R. Herrera-Urbina, J.F. Rivas-Silva, et al., Assessment of growth of silver nanoparticles synthesized from an ethylene glycolsilver nitrate-polyvinylpyrrolidone solution, Physica E Low Dimens. Syst. Nanostruct. 25 (2005) 438-448. https://doi.org/10.1016/j.physe.2004.07.010.

[21]

T. Tsuji, D.H. Thang, Y. Okazaki, et al., Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions, Appl. Surf. Sci. 254 (2008) 5224-5230. https://doi.org/10.1016/j.apsusc.2008.02.048.

[22]

L. Clement, E.M. Hotze, G.V. Lowry, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol. 46(13) (2012) 6900-6914. https://doi.org/10.1021/es2037405.

[23]

J.H. Cavka, S. Jakobsen, U. Olsbye, et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (2008) 13850-13851. https://doi.org/10.1021/ja8057953.

[24]

W. Dong, C. Feng, L. Zhang, et al., Pd@UiO-66: an efficient catalyst for Suzuki-Miyaura coupling reaction at mild condition, Catal. Lett. 146 (2016) 117-125. https://doi.org/10.1007/s10562-015-1659-4.

[25]

J. Zhu, P.C. Wang, M. Lu, Selective oxidation of benzyl alcohol under solvent-free condition with gold nanoparticles encapsulated in metal-organic framework, Appl. Catal. A-Gen. 477 (2014) 125-131. https://doi.org/10.1016/j.apcata.2014.03.013.

[26]

Y. Shao, C. Wu, T. Wu, et al., Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity, Int. J. Biol. Macromol. 111 (2018) 1281-1292. https://doi.org/10.1016/j.ijbiomac.2018.01.012.

[27]

E. Virmani, J.M. Rotter, A. Mähringer, et al., On-surface synthesis of highly oriented thin metal-organic framework films through vaporassisted conversion, J. Am. Chem. Soc. 140 (2018) 4812-4819. https://doi.org/10.1021/jacs.7b08174.

[28]

M. Tammer, G. Sokrates, Infrared and Raman characteristic group frequencies: tables and charts, Colloid Polym. Sci. 283 (2004) 235. https://doi.org/10.1007/s00396-004-1164-6.

[29]

Y.X. Li, ZY. Wei, L. Liu, et al., Ag nanoparticles supported on UiO-66 for selective oxidation of styrene, Inorg. Chem. Commun. 88 (2018) 47-50. https://doi.org/10.1016/j.inoche.2017.12.011.

[30]

Y. Luan, Y. Qi, H. Gao, et al., A general post-synthetic modification approach of amino-tagged metal-organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction, J. Mater. Chem. A 3 (2015) 17320-17331. https://doi.org/10.1039/C5TA00816F.

[31]

C.W.M. Haest, J. De Gier, J.A.F. Op Den Kamp, et al., Changes in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition, Biochim. Biophys. Acta Biomembr. 255 (1972) 720-733. https://doi.org/10.1016/0005-2736(72)90385-9.

[32]

C.W.M. Haest, J. De Gier, G.A. Van Es, et al., Fragility of the permeability barrier of Escherichia coli, Biochim. Biophys. Acta Biomembr. 288 (1972) 43-53. https://doi.org/10.1016/0005-2736(72)90221-0.

[33]

M. Kandiah, M.H. Nilsen, S. Usseglio, et al., Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem. Mater. 22 (2010) 6632-6640. https://doi.org/10.1021/cm102601v.

[34]

L.K. Braydich-Stolle, B. Lucas, A. Schrand, et al., Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells, Toxicol Sci. 116 (2010) 577-589. https://doi.org/10.1093/toxsci/kfq148.

Food Science and Human Wellness
Pages 269-276
Cite this article:
Chen H, Qiu C, Jiang Y, et al. Silver nanoparticles on UiO-66 (Zr) metal-organic frameworks for water disinfection application. Food Science and Human Wellness, 2022, 11(2): 269-276. https://doi.org/10.1016/j.fshw.2021.11.017

560

Views

34

Downloads

11

Crossref

11

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 13 August 2020
Revised: 27 September 2020
Accepted: 05 November 2020
Published: 25 November 2021
© 2022 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return