AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (682.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Deletion of the waaf gene affects O antigen synthesis and pathogenicity in Vibrio parahaemolyticus from shellfish

Feng ZhaoaGuoying DingaQilong WangaHuihui DuaGuosheng Xiaoa( )Deqing Zhoub( )
College of biology and food engineering, Chongqing Three Gorges University, Wanzhou 404100, China
Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
Show Author Information

Abstract

Vibrio parahaemolyticus is the main cause of foodborne gastroenteritis, which is widely distributed in shellfish and other seafood. Most V. parahaemolyticus are nonpathogenic, and only a few types, such as serotype O3:K6, are pathogenic, which is also the most prevalent strain in Asia. However, the relationship between this serotype and pathogenicity has yet to be established. The waaf gene is located in the O antigen synthesis gene cluster. Thus, we constructed a waaf gene deletion mutant (i.e., △waaf) of wild-type (WT) which isolated from shellfish serotype O3:K6 via chitin-mediated transformation technology. We then constructed the △waaf complementary strain (i.e., C-Δwaaf) via the Escherichia coli S17 λpir strain by conjugation. The basic physiological characteristics, adhesion to Caco2 cells, and pathogenicity of the WT, Δwaaf, and C-Δwaaf strains were compared. Growth curves showed no remarkable differences between the WT and Δwaaf strains. However, the Δwaaf strain non-reactive to O3 antisera and other 12 O-group antisera of V. parahaemolyticus. Moreover, the number of flagella and extracellular polysaccharides decreased, the adhesion decreased, and the pathogenicity weakened. These characteristics of the C-Δwaaf strain were similar to those of the WT strain. These results indicated that the waaf gene is vital to the serotype in V. parahaemolyticus, and changes in O antigen could affect the pathogenicity of this bacterium. This study will be helpful to understand the pathogenic mechanism of V. parahaemolyticus.

References

[1]

M.S. Aschtgen, J. Lynch, E. Koch, et al., Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development, J. Bacteriol. 198(16) (2016) 2156-2165. https://doi.org/10.1128/jb.00101-16.

[2]

A.K. Bej, D.P. Patterson, C.W. Brasher, et al., Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh, J. Microbiol. Meth. 36(3) (1999) 215-225. https://doi.org/10.1016/s0167-7012(99)00037-8.

[3]

C.N. Johnson, Fitness factors in vibrios: a mini-review, FEMS Microbiol. Ecol. 65 (2013) 826-851. https://doi.org/10.1007/s00248-012-0168-x.

[4]

T. Shimohata, A. Takahashi, Diarrhea induced by infection of Vibrio parahaemolyticus, J. Clin. Invest. 57(34) (2010) 179-182. https://doi.org/10.2152/jmi.57.179.

[5]

L. Zhang, K. Orth, Virulence determinants for Vibrio parahaemolyticus infection, Curr. Opin. Microbiol. 16(1) (2013) 70-77. https://doi: 10.1016/j.mib.2013.02.002.

[6]

W. Yu, K. Jong, Y. Lin, et al., Prevalence of Vibrio parahaemolyticus in oyster and clam culturing environments in Taiwan, Int. J. Food Microbiol. 160(3) (2013) 185-192. https://doi.org/10.1016/j.ijfoodmicro.2012.11.002.

[7]

A. Chowdhury, M. Ishibashi, V.D. Thiem, et al., Emergence and serovar transition of Vibrio parahaemolyticus pandemic strains isolated during a diarrhea outbreak in Vietnam between 1997 and 1999, Microbiol. Immune. 48(4) (2004) 319-327. https://doi.org/10.1111/j.1348-0421.2004.tb03513.x.

[8]

G.B. Nair, T. Ramamurthy, S.K. Bhattacharya, et al., Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants, Clin. Microbiol. Rev. 20(1) (2007) 39-48. https://doi.org/10.1128/cmr.00025-06.

[9]

X. Chen, Q. Zhu, Y. Liu, et al., Pathogenic characteristics of and variation in Vibrio parahaemolyticus isolated from acute diarrhoeal patients in southeastern China from 2013 to 2017, Infect. Drug Resist. 13 (2020) 1307-1318. https://doi.org/10.2147/idr.s234186.

[10]

J.J. Miller, B.C. Weimer, R. Timme, et al., Phylogenetic and biogeographic patterns of Vibrio parahaemolyticus strains from north America inferred from whole-genome sequence data, Appl. Environ. Microbiol. 87(12) (2021) e00693-21. https://doi.org/10.1128/aem.00693-21.

[11]

Y. Chen, O.C. Stine, J.H. Badger, et al., Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence. BMC Genomics 12(1) (2011) 294. https://doi.org/10.1186/1471-2164-12-294.

[12]

S. Shinoda, Sixty years from the discovery of Vibrio parahaemolyticus and some recollections, Biocontrol Sci. 16(4) (2011) 129-137. https://doi.org/10.4265/bio.16.129.

[13]

L. Li, H. Meng, D. Gu, et al., Molecular mechanisms of Vibrio parahaemolyticus pathogenesis, Microbiol. Res. 222 (2019) 43-51. https://doi.org/10.1016/j.micres.2019.03.003.

[14]

Y. Pang, X. Guo, X. Tian, et al., Developing a novel molecular serotyping system based on capsular polysaccharide synthesis gene clusters of Vibrio parahaemolyticus, Int. J. Food Microbiol. 309 (2019) 108332. https://doi.org/10.1016/j.ijfoodmicro.2019.108332.

[15]

M.I. Kanipes, L.C. Holder, A.T. Corcoran, et al., A deep-rough mutant of Campylobacter jejuni 81-176 is noninvasive for intestinal epithelial cells, Infect. Immune. 72(4) (2004) 2452-2455. https://doi.org/10.1128/iai.72.4.2452-2455.2004.

[16]

W.E. Swords, B.A. Buscher, I.K.Ver Steeg, et al., Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor, Mol. Microbiol. 37(1) (2000) 13-27. https://doi.org/10.1046/j.1365-2958.2000.01952.x.

[17]

A.L. Erwin, S. Allen, D.K. Ho, et al., Role of lgtC in resistance of nontypeable Haemophilus influenzae strain R2866 to human serum, Infect. Immun. 74(11) (2006) 6226-6235. https://doi.org/10.1128/iai.00722-06.

[18]

B. Liu, Y.A. Knirel, L. Feng, et al., Structural diversity in salmonella O antigens and its genetic basis, FEMS Microbiol. Rev. 38(1) (2014) 56-89. https://doi.org/10.1111/1574-6976.12034.

[19]

M. Chen, D. Guo, H. Wong, et al., Development of O-serogroup specific PCR assay for detection and identification of Vibrio parahaemolyticus, Int. J. Food Microbial. 159(2) (2012) 122-129. https://doi.org/10.1016/j.ijfoodmicro.2012.08.012.

[20]

K. Makino, K. Oshima, K. Kurokawa, et al., Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholera, Lancet 361(9359) (2003) 743-749. https://doi.org/10.1016/s0140-6736(03)12659-1.

[21]

M. Okura, R. Osawa, A. Tokunaga, et al., Genetic analyses of the putative O and K antigen gene clusters of pandemic Vibrio parahaemolyticus, Microbiol, Immune. 52(5) (2008) 251-264. https://doi.org/10.1111/j.1348-0421.2008.00027.x.

[22]

V. Letchumanan, K.G. Chan, L.H. Lee, Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques, Front. Microbiol. 5 (2014) 705. https://doi.org/10.3389/fmicb.2014.00705.

[23]

Z. Wang, J. Wang, G. Ren, et al., Deletion of the genes waaC, waaF, or waaG in Escherichia coli W3110 disables the flagella biosynthesis, J. Basic Microb. 56(9) (2016) 1021-1035. https://doi.org/10.1002/jobm.201600065.

[24]

Q. Liu, Q. Liu, J.Yi, et al., Outer membrane vesicles derived from Salmonella typhimurium mutants with truncated LPS induce cross-protective immune responses against infection of Salmonella enterica serovars in the mouse model, Int. J. Med. Microbiol. 306(8) (2016) 697-706. https://doi.org/10.1016/j.ijmm.2016.08.004.

[25]

I. Luis, C. Nuria, P. Nuria, et al., The Klebsiella pneumoniae wabG gene: role in biosynthesis of the core lipopolysaccharide and virulence, J. Bacteriol. 185(24) (2003) 7213-7221. https://doi.org/10.1128/jb.185.24.7213-7221.2003.

[26]

A. Ebbensgaard, H. Mordhorst, F.M. Aarestrup, et al., The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides, Front. Microbiol. 9 (2018) 2153. https://doi.org/10.3389/fmicb.2018.02153.

[27]

H. Wang, B.L. Postier, R.L. Burnap, Optimization of fusion PCR for in vitro construction of gene knockout fragments, BioTechniques 33(1) (2018) 26-32. https://doi.org/10.2144/02331bm02.

[28]

A.G. Paul, S.T. Matthew, C.T. Patrick, et al., USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus, Appl. Environ. Microbiol. 75(15) (2009) 4936-4949. https://doi.org/10.1128/aem.02564-08.

[29]

M.M. Corsaro, E. Parrilli, R. Lanzetta, et al., The presence of OMP inclusion bodies in a Escherichia coli K-12 mutated strain is not related to lipopolysaccharide structure, J. Biochem. 146(2) (2009) 231-240. https://doi.org/10.1093/jb/mvp062.

[30]

T. Chen, S. Bolland, I. Chen, et al., The CGM1a (CEACAM3/CD66d) mediated phagocytic pathway of Neisseria gonorrhoeae expressing opacity (Opa) proteins is also the pathway to cell death, J. Biol. Chem. 276 (2001) 17413-17419. https://doi.org/10.1074/jbc.m010609200.

[31]

F. Coutard, M. Pommepuy, S. Loaec, et al., mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state, J. Appl. Microbiol. 98 (2005) 951-961. https://doi.org/10.1111/j.1365-2672.2005.02534.x.

[32]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method, Methods 25(4) (2001) 402-408. https://doi.org/10.1006/meth.2001.1262

[33]

Y. Miyamoto, T. Kato, Y. Obara, et al., In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity, J. Bacterial. 100(2) (1969) 1147-1149. https://doi.org/10.1128/jb.100.2.1147-1149.1969.

[34]

Y. Isshiki, S. Kondo, Characterization of the carbohydrate backbone of Vibrio parahaemolyticus O6 lipopolysaccharides, Microbiol. Immun. 55(8) (2011) 539-551. https://doi.org/10.1111/j.1348-0421.2011.00355.x.

[35]

S. Gronow, W. Brabetz, H. Brade, Comparative functional characterization in vitro of heptosyltransferase Ⅰ (WaaC) and Ⅱ (WaaF) from Escherichia coli, Eur. J. Biochem. 267(22) (2000) 6602-6611. https://doi.org/10.1046/j.1432-1327.2000.01754.x.

[36]

V. Chizhikov, A. Rasooly, K. Chumakov, et al., Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67(7) (2001) 3258-3263. https://doi.org/10.1128/aem.67.7.3258-3263.2001.

[37]

L. Cuthbertson, V. Kos, C. Whitfield, ABC transporters involved in export of cell surface glycoconjugates, Microbiol. Mol. Biol. R. 74(3) (2010) 341-362. https://doi.org/10.1128/mmbr.00009-10.

[38]

Z.T. Güvener, L.L. McCarter, Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus, J. Bacteriol. 185(18) (2003) 5431-5441. https://doi.org/10.1128/jb.185.18.5431-5441.2003.

[39]

Y. Chen, P. Bystricky, J. Adeyeye, et al., The capsule polysaccharide structure and biogenesis for non-O1 Vibrio cholerae NRT36S: genes are embedded in the LPS region, BMC Microbiol. 7(1) (2007) 20. https://doi.org/10.1186/1471-2180-7-20.

[40]

K. Levinson, D. Baranova, N. Mantis, A monoclonal antibody that targets the conserved core/lipid A region of lipopolysaccharide affects motility and reduces intestinal colonization of both classical and El Tor Vibrio cholerae biotypes, Vaccine 34(48) (2016) 5833-5836. https://doi.org/10.1016/j.vaccine.2016.10.023.

[41]

Y. He, C. Ye, P. Zhang, et al., Yersinia pseudotuberculosis exploits cd209 receptors for promoting host dissemination and infection, Infect. Immun. 87(1) (2019) e00654-18. https://doi.org/10.1128/iai.00654-18.

[42]

T. Shimohata, K. Mawatari, H. Iba, et al., VopB1 and VopD1 are essential for translocation of type Ⅲ secretion system 1 effectors of Vibrio parahaemolyticus, Can. J. Microbiol. 58 (2012) 1002-1007. https://doi.org/10.1139/w2012-081

[43]

M. Youn, K.M. Lee, S.H. Kim, et al., Escherichia coli O157:H7 LPS O-side chains and pO157 are required for killing Caenorhabditis elegans, Biochem. Bioph. Res. Co. 436(3) (2013) 388-393. https://doi.org/10.1016/j.bbrc.2013.05.111.

[44]

Z. Xu, M. Yue, R. Zhou, et al., Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China. PLos One 6(5) (2011) e19631. https://doi.org/10.1371/journal.pone.0019631.

Food Science and Human Wellness
Pages 418-426
Cite this article:
Zhao F, Ding G, Wang Q, et al. Deletion of the waaf gene affects O antigen synthesis and pathogenicity in Vibrio parahaemolyticus from shellfish. Food Science and Human Wellness, 2022, 11(2): 418-426. https://doi.org/10.1016/j.fshw.2021.11.026

491

Views

53

Downloads

0

Crossref

0

Web of Science

1

Scopus

1

CSCD

Altmetrics

Received: 08 March 2021
Revised: 23 March 2021
Accepted: 25 March 2021
Published: 25 November 2021
© 2022 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return