AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (797.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in the managements of type 2 diabetes mellitus and natural hypoglycemic substances

Chong NingaYuhan JiaoaJiaqi WangaWeiwei LiaJingqiu ZhouaYi-Chieh LeebDik-Lung MacChung-Hang LeungdRugang Zhua( )Hui-Min David Wange,f,g( )
College of Light Industry, Liaoning University, Shenyang 110036, China
Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, China
Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
State Key Laboratoryof Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan, China
Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, China
Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Diabetes has become a global concern at present, among which type 2 diabetes mellitus (T2DM) accounts for approximately 90%–95% of patients. T2DM is a type of metabolic disorder syndrome that results from a genetic defect, and it is based on insulin resistance and an insulin secretion disorder. The occurrence of T2DM is usually the outcome of both genetic and environmental factors and their interactions. The etiology and pathogenesis of diabetes have not been fully elucidated, and no radical therapeutic cure has been found. Patients with T2DM suffer from complications such as the development of a chronic hyperglycemic condition and even serious metabolic disorders and organ damage in the body and depression and dementia, in addition to other chronic complications. Many studies have suggested that diet is crucial in the development of diabetes and the control of blood glucose. Natural substances have the characteristics of low toxicity and few side effects and may be key to the development of diabetic health products and preventive treatments. This paper reviews the etiology, pathogenesis, risks, treatments and diets related to T2DM to summarize the types of recently available natural products, from both local and foreign sources, for lowering blood glucose at home and their application in supplementary hypoglycemic foods. The key findings and conclusions suggest that there are various known T2DM-inducing factors, including genetic and environmental factors and three types of hybrid factors.

References

[1]

C. Moreno-Castilla, D. Mauricio, M. Hernandez, Role of medical nutrition therapy in the management of gestational diabetes mellitus, Curr. Diab. Rep. 16(4) (2016) 22. https://doi.org/10.1007/s11892-016-0717-7

[2]

S. Gautam, L. Pirabu, C.G. Agrawal, et al., CD36 gene variants and their association with type 2 diabetes in an indian population, Diabetes Technol. The. 15(8) (2013) 680. https://doi.org/10.1016/j.gene.2018.03.060

[3]

G. Mingrone, D.E. Cummings, Changes of insulin sensitivity and secretion after bariatric/metabolic surgery. Surg. Obes. Relat. Dis 12(6) (2016) 1199. https://doi.org/10.1016/j.soard.2016.05.013

[4]

S.M. Park, J.S. Choi, T.G. Nam, Anti-diabetic effect of 3-hydroxy-2-naphthoicacid, an endoplasmic reticulum stress-reducing chemical chaperone, Eur. J. Pharmacol. 779 (2016) 157-167. https://doi.org/10.1089/dia.2012.0326

[5]

X.J. Ma, W.P. Jia, C. Hu, et al., Genetic characteristics of familial type 2 diabetes pedigrees: a preliminary analysis of 4468 persons from 715 pedigrees, Nat. Med. J. China 88(36) (2008) 2541

[6]

M. Xiong, Y. Huang, Y. Liu, et al., Antidiabetic activity of ergosterol from Pleurotus ostreatus in KK-A(y) mice with spontaneous type 2 diabetes mellitus, Mol. Nutr. Food Res. 62(3) (2018) 1700444. https://doi.org/10.1002/mnfr.201700444

[7]

N. Zhang, X. Yang, X. Zhu, et al., Type 2 diabetes mellitus unawareness, prevalence, trends and risk factors: National Health and Nutrition Examination Survey (NHANES) 1999-2010, J. Int. Med. Res. 45(2) (2017) 594. https://doi.org/10.1177/0300060517693178

[8]

G.C. Pang, J.B. Xie, Q.S. Chen, et al., Energy intake, metabolic homeostasis, and human health, Food Sci. Hum. Wellness 3 (2014) 89-103. https://doi.org/10.1016/j.fshw.2015.01.001

[9]

T. Arora, S. Taheri, Is sleep education an effective tool for sleep improvement and minimizing metabolic disturbance and obesity in adolescents? Sleep Med. Rev. 36 (2016) 3-12. https://doi.org/10.1016/j.smrv.2016.08.004

[10]

S. Dangigarimella, New studies affirm Mediterranean diet's potential for patient self-management, prevention of T2DM, Am. J. Manag. Care. 20 (2014) A39-A40. https://doi.org/10.1136/bmjstel-2014-000002.96

[11]

E.T.D. Lemos, J. Oliveira, J.P. Pinheiro, et al., Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus, Oxid. Med. Cell Longev. 2012(1) (2012) 741545. https://doi.org/10.1155/2012/741545

[12]

F. Li, H. Luo, Z.J. Xu, Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced Obese mice, Diabetologia 59(6) (2020) 1276-1286. https://doi.org/10.1007/s00125-016-3912-9

[13]

T. Dendup, X. Feng, S. Clingan, et al., Environmental risk factors for developing type 2 diabetes mellitus: a systematic review, Inter. J. Env. Res. Public Health. 15(1) (2018). https://doi.org/10.3390/ijerph15010078

[14]

K. Wolf, A. Popp, A. Schneider, et al. Association between long-term exposure to air pollution and biomarkers related to insulin resistance subclinical inflammation and adipokines, Diabetes 65(11) (2016) 3314. https://doi.org/10.2337/db15-1567

[15]

S.S. Andra, P. Charisiadis, K.C. Makris, Obesity-mediated association between exposure to brominated trihalomethanes and type Ⅱ diabetes mellitus: an exploratory analysis, Sci. Total Environ. 485 (2014) 340-347. https://doi.org/10.1016/j.scitotenv.2014.03.075

[16]

W.C. Pan, W.J. Seow, M.L. Kile, et al., Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh, Am. J. Epidemiol. 178(10) (2013) 1563-1570. https://doi.org/10.1016/j.scitotenv.2014.03.075

[17]

K. Semenkovich, M.E. Brown, D.M. Svrakic, et al., Depression in type 2 diabetes mellitus: prevalence, impact, and treatment, Drugs 75(6) (2015) 577-587. https://doi.org/10.1007/s40265-015-0347-4

[18]

Y. Zhang, H. Zhang, Microbiota associated with type 2 diabetes and its related complications, Food Sci. Hum. Wellness 2 (2013) 167-172. https://doi.org/10.1016/j.fshw.2013.09.002

[19]

N.J. Timpson, C.M. Lindgren, M.N. Weedon, et al., Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data, Diabetes 58(2) (2008) 505-510. https://doi.org/10.2337/db08-0906

[20]

Y. Li, T. Goto, K. Yamakuni, et al., 4-hydroxyderricin, as a PPARγ agonist, Promotes adipogenesis, adiponectin secretion, and glucose uptake in 3T3-L1 cells, Lipids 51(7) (2016) 1-9. https://doi.org/10.1007/s11745-016-4154-9

[21]

C. Lankatillake, T. Huynh, D.A. Dias, Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants, Plant Methods 15(105) (2019) 1-35. https://doi.org/10.1186/s13007-019-0487-8

[22]

K.N. Zhu, C.H. Jiang, Y.S. Tian, Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: the relationship to AMPK activation, Phytomeddicine 22(9) (2015) 837-846. https://doi.org/10.1016/j.phymed.2015.05.058

[23]

S. Torres, M. Camacho, P. Costa, et al., Psychometric properties of the portuguese version of the yale food addiction scale, Eat. Weight Disord. 22(2) (2017) 1-9. https://doi.org/10.1007/s40519-016-0349-6

[24]

P. Pedram, D. Wadden, P. Amini, et al., Prevalence of food addiction and its association with obesity in the newfoundland population, Can. J. Diabetes 37(5/6) (2013) S243. https://doi.org/10.1016/j.jcjd.2013.03.161

[25]

F. Yang, A. Liu, Y. Li, et al., Food addiction in patients with newly diagnosed type 2 diabetes in northeast China, Front. Endocrinol. 8 (2017) 218. https://doi.org/10.3389/fendo.2017.00218

[26]

Y. Zhao, Y. Zhou, Puerarin improve insulin resistance of adipocyte through activating Cb1 binding protein path, Chin. J. Integr. Med. 18(4) (2012) 293-298. https://doi.org/10.1007/s11655-012-1058-2

[27]

H. Ren, S. Yan, B. Zhang, et al., Glut4 expression defines an insulin-sensitive hypothalamic neuronal population, Mol. Metab. 3(4) (2014) 452-459. https://doi.org/10.1016/j.molmet.2014.04.006

[28]

J.H. Baik, Dopamine signaling in food addiction: role of dopamine D2 receptors, Bmb. Rep. 46(11) (2013) 519-526. https://doi.org/10.5483/BMBRep.2013.46.11.207

[29]

K.L. Raymond, L. Kannisdymand, G.P. Lovell, A graduated food addiction classification approach significantly differentiates depression, anxiety and stress among people with type 2 diabetes, Diabetes Res. Clin. Pract. 132 (2017) 95-101. https://doi.org/10.1016/j.diabres.2017.07.028

[30]

L. Liu, W. Wang, J. Sun, et al., Association of famine exposure during early life with the risk of type 2 diabetes in adulthood: a meta-analysis, Eur. J. Nutr. 57(2) (2018) 741-749. https://doi.org/10.1007/s00394-016-1363-1

[31]

H. Zhen, W. Yin, F. Zhang, et al., α-Glucosidase inhibitors isolated from medicinal plants, Food Sci. Hum. Wellness 3 (2014) 136-147. https://doi.org/10.1016/j.fshw.2014.11.003

[32]

M.L. Palanker, J.L. Fink, N. Kirk, et al., A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila, Dis. Model. Mech. 4(6) (2011) 842-849. https://doi.org/10.1242/dmm.007948

[33]

P. Li, S. Liu, L. Min, et al., Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance, Cell 167(4) (2016) 973. https://doi.org/10.1016/j.cell.2016.10.025

[34]

N. Speed, C. Saunders, A.R. Davis, et al., Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding, PLoS One 6(9) (2011) e25169. https://doi.org/10.1371/journal.pone.0025169

[35]

M.M. Kaczmarczyk, M.J. Miller, G.G. Freund, The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer-metabolism-clinical and experimental, Metabolism 61(8) (2012) 1058-1066. https://doi.org/10.1016/j.metabol.2012.01.017

[36]

A. Prathapan, M.S. Krishna, V.M. Nisha, et al., Polyphenol rich fruit pulp of Aegle marmelos (L.) Correa exhibits nutraceutical properties to down regulate diabetic complications-an in vitro study, Food Res. Int. 48(2) (2012) 690-695. https://doi.org/10.1016/j.foodres.2012.06.008

[37]

M. Solayman, Y. Ali, F. Alam, et al., Polyphenols: potential future arsenals in the treatment of diabetes, Curr. Pharm. Design. 22(5) (2016) 549-565. https://doi.org/10.2174/1381612822666151125001111

[38]

E.J.M. Feskens, D. Sluik, G.J. van Woudenbergh, et al. Meat consumption, diabetes, and its complications, Curr. Diabetes Rep. 13(2) (2013) 298-306. https://doi.org/10.1007/s11892-013-0365-0

[39]

A. Pan, Q. Sun, A.M. Bernstein, et al., Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women, JAMA Intern. Med. 173(14) (2013) 1328-1335. https://doi.org/10.1038/sj.bdj.2014.426

[40]

A. Morris, Diabetes: very-low-calorie diet reverses T2DM in rats, Nat. Rev. Endocrinol. 14(1) (2018) 2. https://doi.org/10.1038/nrendo.2017.159

[41]

L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359(6380) (2018) 1151-1156. https://doi.org/10.1126/science.aao5774

[42]

C. Moroti, L.F.S. Magri, M.D.R. Costa, et al., Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus, Lipids Health Dis. 11(1) (2012) 29. https://doi.org/10.1186/1476-511X-11-29

[43]

D.J. Alperet, L.M. Butler, W.P. Koh, et al., Influence of temperate, subtropical, and tropical fruit consumption on risk of type 2 diabetes in an Asian population, Am. J. Clin. Nutr. 105(3) (2017) 736. https://doi.org/10.3945/ajcn.116.147090

[44]

T. Burrows, L. Hides, R. Brown, et al., Differences in dietary preferences, personality and mental health in Australian adults with and without food addiction, Nutrients 9(3) (2017) 285. https://doi.org/10.3390/nu9030285

[45]

M. Daniel, T.O. Tollefsbol, Epigenetic linkage of aging, cancer and nutrition, J. Exp. Biol. 218(1) (2015) 59. https://doi.org/10.1242/jeb.107110

[46]

C. Ning, X. Wang, S. Gao, et al., Chicory inulin ameliorates type 2 diabetes mellitus and suppresses JNK and MAPK pathways in vivo and in vitro, Mol. Nutr. Food Res. 61(8) (2017) 1600673. https://doi.org/10.1002/mnfr.201600673

[47]

Y. Pan, C. Wang, Z. Chen, et al., Physicochemical properties and antidiabetic effects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice, Carbohydr. Polym. 164 (2017) 370-378. https://doi.org/10.1016/j.carbpol.2017.01.092

[48]

L. Sylow, M. Kleinert, C. Prats, et al., Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance, Cell. Signal. 26 (2014) 323-331. https://doi.org/10.1016/j.cellsig.2013.11.007

[49]

W.Z. Li, X.H. Wang, H.X. Zhang, et al., Protective effect of the n-butanol Toona sinensis seed extract on diabetic nephropathy rat kidneys, Genet Mol Res. 15(1) (2015) 50. http://doi.org/10.4238/gmr.15017403

[50]

J. Guo, H. Tao, Y. Cao, et al., Prevention of obesity and type 2 diabetes with aged citrus peel (Chenpi) extract, J. Agric. Food Chem. 64(10) (2016) 2053-2061. https://doi.org/10.1021/acs.jafc.5b06157

[51]

S. Tian, M. Wang, C. Liu, et al., Mulberry leaf reduces inflammation and insulin resistance in type 2 diabetic mice by TLRs and insulin signalling pathway, BMC Complement. Altern. Med. 19(1) (2019) 1-12. https://doi.org/10.1186/s12906-019-2742-y

[52]

S.J. Chen, C. Aikawa, R. Yoshida, et al., Anti-prediabetic effect of rose hip (Rosa canina) extract in spontaneously diabetic Torii rats, J. Sci. Food Agric. 97(12) (2017) 3923-3928. https://doi.org/10.1002/jsfa.8254

[53]

Q. Wang, Y. Zheng, W. Zhuang, et al., Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch, Food Chem. 264 (2018) 427-434. https://doi.org/10.1016/j.foodchem.2018.05.056

[54]

F. Kong, Y. Qin, Z. Su, et al., Optimization of extraction of hypoglycemic ingredients from grape seeds and evaluation of α-glucosidase and α-amylase inhibitory effects in vitro, J. Food Sci. 83(5) (2018) 1422-1429. http://dx.chinadoi.cn/10.3390/molecules191016416

[55]

S.H. Arzoo, K. Chattopadhyay, S. Banerjee, et al., Synergistic improved efficacy of Gymnadenia orchidis root Salep and pumpkin seed on induced diabetic complications, Diabetes Res. Clin. Pract. 146 (2018) 278-288. https://doi.org/10.1016/j.diabres.2018.10.025

[56]

F.Q. Zhao, Q.B. Liu, J. Cao, et al., A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats, Food Chem. Toxicol. 135 (2020) 110886. https://doi.org/10.1016/j.diabres.2018.10.025

[57]

X. Li, Z. Yu, S. Long, et al., Hypoglycemic effect of Laminaria japonica polysaccharide in a type 2 diabetes mellitus mouse model, ISRN Endocrinology 2012(9) (2014) 507462. https://doi.org/10.5402/2012/507462

[58]

O.O. Elekofehinti, E.O. Ariyo, M.O. Akinjiyan, et al. Potential use of bitter melon (Momordica charantia) derived compounds as antidiabetics: in silico and in vivo studies, Pathophysiology 25(4) (2018) 327-333. https://doi.org/10.1016/j.pathophys.2018.05.003

[59]

H.Q. Sun, X.F. Yu, T. Li, et al., Structure and hypoglycemic activity of a novel exopolysaccharide of Cordyceps militaris, Int. J. Biol. Macromol. 166 (2021) 496-508. https://doi.org/10.1016/j.ijbiomac.2020.10.207

[60]

Y.J. Wu, Z.X. Wei, F.M. Zhang, et al., Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: a review, Int. J. Biol. Macromol. 121 (2019) 1005-1010. https://doi.org/10.1016/j.ijbiomac.2018.10.117

[61]

H. Yin, X. Zhao, L. Tong, et al., In vitro and in vivo anti-hyperglycemic effects of polysaccharides from Auricularia auricular, Food Sci. 36(21) (2015) 221-226

[62]

Y.C. Tung, T.H. Hsieh, M.J. Yang, et al., The effects of the extract of oolong tea and its metabolites from Andraca theae in high fat diet induced obese Wistar rat, Food Sci. Hum. Wellness 7(2) (2018) 120-124. https://doi.org/10.1016/j.fshw.2018.05.001

[63]

M.A. Daim, M.S. Ali, F.F. Madkour, et al., Oral spirulina platensis attenuates hyperglycemia and exhibits antinociceptive effect in streptozotocin-induced diabetic neuropathy rat model, J. Pain Res. 13 (2020) 2289-2296. https://doi.org/10.2147/JPR.S267347

[64]

Z.L. Wu, H.Y. Chen, Study on hypoglycemic function of banana polysaccharides, Light Ind. Tech. 30(12) (2014) 9-10

[65]

X. Zeng, Z. Du, X. Ding, et al., Preparation, characterization and in vitro hypoglycemic activity of banana condensed tannin-inulin conjugate, Food Funct. 11(9) (2020) 7973-7986. https://doi.org/10.1039/D0FO01652G

[66]

J.J. Yi, Z.Y. Wang, H.N. Bai, et al., Effects of flavonoids from sea-buckthorn on the blood glucose level of diabetic mice induced by alloxan, Food Ind. Sci. Tech. 35(6) (2014) 347-350

[67]

L. Ding, P. Li, C.B.S. Lau, et al., Mechanistic studies on the antidiabetic activity of a polysaccharide-rich extract of Radix Ophiopogonis, Phytother. Res. 26(1) (2012) 101-105. https://doi.org/10.1002/ptr.3505

[68]

Q. Li, W. Li, Q. Gao, et al., Hypoglycemic effect of chinese yam (Dioscorea opposita rhizoma) polysaccharide in different structure and molecular weight, J. Food Sci. 82(10) (2017) 2487-2494. https://doi.org/10.1111/1750-3841.13919

[69]

Y. Han, H.W. Jung, Y.K. Park, The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells, BioMed Central 12(1) (2012) 154. https://doi.org/10.1186/1472-6882-12-154

[70]

W.J. Liu, H.F. Jiang, J.W. Zhang, et al., Lycium barbarum polysaccharides decrease hyperglycemia-aggravated ischemic brain injury through maintaining mitochondrial fission and fusion balance, Int. J. Biol. Sci. 13(7) (2017) 901-910. https://doi.org/10.7150/ijbs.18404

[71]

J. Fu, J. Fu, J. Yuan, et al. Anti-diabetic activities of Acanthopanax senticosus polysaccharide (ASP) in combination with metformin, Int. J. Macromol. 50(3) (2012) 623. https://doi.org/10.1016/j.ijbiomac.2012.01.034

[72]

J. Niu, G. Xu, S. Jiang, et al. In vitro antioxidant activities and anti - diabetic effect of a polysaccharide from Schisandra sphenanthera in rats with type 2 diabetes, Int. J. Biol. Macromol. 94 (2017) 154-160. https://doi.org/10.1016/j.ijbiomac.2016.10.015

[73]

W.Y. Zhang, J.J. Lee, Y. Kim, et al., Effect of eriodictyol on glucose uptake and insulin resistance in vitro, J. Agric. Food Chem. 60 (31) (2012) 7652-7658. https://doi.org/10.1021/jf300601z

[74]

C.L. Huang, J.L. Zheng, F.L. Li, et al., Indian buead polysaccharide hypoglycemic effect in mice with diabetes type Ⅱ study, J. Food Res. Develop. 5(4) (2016) 21-25

[75]

N. Saji, N. Francis, L.J. Schwarz, et al., Rice bran phenolic extracts modulate insulin secretion and gene expression associated with β-cell function, Nutrients 12(6) (2020) 1889. https://doi.org/10.3390/nu12061889

[76]

A.M.A. Alsuhaibani, A.N. Al-Kuraiee, Effect of low-calorie pumpkin jams fortified with soybean on diabetic rats: study of chemical and sensory properties, J. Food Qual. 2018 (2018) 1-7. https://doi.org/10.1155/2018/9408715

[77]

F. Saeed, M. Afzaal, B. Niaz, et al., Bitter melon (Momordica charantia): a natural healthy vegetabl, Int. J. Food Prop. 21(1) (2018) 1270-1290. https://doi.org/10.1093/ajhp/60.4.356

[78]

G. Chen, M. Guo. Rapid screening for alpha glucosidase inhibitors from gymnema sylvestre by affinity ultrafiltration-HPLC-MS, Front. Pharm. 8 (2017) 228. https://doi.org/10.3389/fphar.2017.00228

[79]

M. Wen, J.H. Wang, F.H. Liu, et al., Hypoglycemic effect of sea cucumber saponins on spontaneous diabetic mice, Food Ind. Sci. Tech. 34(22) (2013) 149-152

[80]

X. Gong, N. Chen, K. Ren, et al., The fruits of Siraitia grosvenorii: a review of a Chinese food-medicine, Front. Pharmacol. 10 (2019) 1400. https://doi.org/10.3389/fphar.2019.01400

[81]

A. Lin, J. Li, D. Li, et al., Tissue distribution study of mangiferin after intragastric administration of mangiferin monomer, Rhizoma Anemarrhenae, and Rhizoma Anemarrhenae-Phellodendron decoctions in normal or type 2 diabetic rats by LC-MS/MS, J. Chromatogr B. 1122/1123 (2019) 18-28. https://doi.org/10.1016/j.jchromb.2019.05.019

[82]

Y. Zhang, L.J. Yu, W.J. Cai, Protopanaxatriol, a novel PPAR gamma antagonist from Panax ginseng, alleviates steatosis in mice, Sci. Rep. 4 (2014) 7375. https://doi.org/10.1038/srep07375

[83]

K. Tkachenko, M. Frontasyeva, A. Vasilev, et al., Major and trace element content of Tribulus terrestris L. wildlife plants, Plants 9(12) (2020) 1764. https://doi.org/10.3390/plants9121764

[84]

H. Ma, Y. Hu, Z. Zou, et al., Antihyperglycemia and antihyperlipidemia effect of protoberberine alkaloids from rhizoma coptidis in HepG2 cell and diabetic KK-Ay mice, Drug Dev. Res. 77(4) (2016) 163-170. https://doi.org/10.1002/ddr.21302

[85]

M. Zhang, C. Zheng, M. Yang, et al., Primary metabolites and polyphenols in rapeseed (Tribulus terrestris L.) cultivars in China, J. Am. Oil Chem. Soc. 93(3) (2019) 303-317. https://doi.org/10.1002/aocs.12179

[86]

X. Chen, Z. Gao, M. Song, et al., Identification of terpenoids from Rubus corchorifolius L. f. leaves and their anti-proliferative effects on human cancer cells, Food Funct. 8(3) (2017) 1052-1060. https://doi.org/10.1039/C6FO01343K

[87]

I.Y. Bae, J.S. An, I.K. Oh, et al., Optimized preparation of anthocyanin-rich extract from black rice and its effects on in vitro digestibility, Food Sci. Biotechnol. 26(5) (2017) 1-8. https://doi.org/10.1007/s10068-017-0188-x

[88]

G. Mingrone, D.E. Cummings, Changes of insulin sensitivity and secretion after bariatric/metabolic surgery, Surg. Obes. Relat. Dis. 12(6) (2016) 1199. https://doi.org/10.1016/j.soard.2016.05.013

[89]

H.P. Himsworth, Diabetes mellitus. Its differentiation into insolin-sensitive and insulin-insensitive types, Lancet 42(6) (2013) 1594-1598. https://doi.org/10.1111/j.1464-5491.2011.3508.x

[90]

A. Rathinam, L. Pari, Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats, Chem. Biol. Interact. 256 (2016) 161-166. https://doi.org/10.1016/j.cbi.2016.07.009

[91]

K. Rehman, M.S.H. Akash, Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J. Cell Biochem. 18(11) (2017) 3577-3585. https://doi.org/10.1002/jcb.26097

[92]

V.T. Samuel, G.I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell 148(5) (2012) 852-871. https://doi.org/10.1016/j.cell.2012.02.017

[93]

M.C. Petersen, A.K. Madiraju, B.M. Gassaway, et al., Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance, J. Clin. Invest. 126(11) (2016) 4361. https://doi.org/10.1172/JCI86013

[94]

H. Yamazaki, T. Tsuboya, K. Tsuji, et al., Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes, Diabetes Care 38(9) (2015) 1673. https://doi.org/10.2337/dc15-0140

[95]

O.T. Hardy, R.A. Perugini, S.M. Nicoloro, et al., Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity, Surg. Obes. Relat. Dis. 7(1) (2011) 60-67. https://doi.org/10.1016/j.soard.2010.05.013

[96]

P.W. Franks, E. Pearson, J.C. Florez, Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects, Diabetes Care 36(5) (2013) 1413-1421. https://doi.org/10.2337/dc12-2211

[97]

M.I. Mccarthy, Genomic medicine at the heart of diabetes management, Diabetologia 58(8) (2015) 1725-1729. https://doi.org/10.1007/s00125-015-3588-6

[98]

L.A. Lotta, R.A. Scot, S.J. Sharp, et al., Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis, PLoS Med. 13(11) (2016) e1002179. https://doi.org/10.1371/journal.pmed.1002179

[99]

N. Hyun, J.J. Kim, Y.N. Kim, Chokeberry extract and its active polyphenols suppress adipogenesis in 3T3-L1 adipocytes and modulates fat accumulation and insulin resistance in diet-induced obese mice, Nutrients 10 (11) (2018) 1734. https://doi.org/10.3390/nu10111734

[100]

B. Krishnan, A.R. Ganesan, R. Balasubramani, et al., Chrysoeriol ameliorates hyperglycemia by regulating the carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats, Food Sci. Hum. Wellnes 9(4) (2020) 346-354

[101]

C.R. Balistreri, A.R. Bonfigli, M. Boemi, et al., Evidences of +896 A/G TLR4 polymorphism as an indicative of prevalence of complications in T2DM patients, Mediat. Inflamm. 2 (2014) 973139. https://doi.org/10.1155/2014/973139

[102]

R.V. Cohen, J.C. Pinheiro, C.A. Schiavon, et al., Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity, Diabetes Care 35(7) (2012) 1420. https://doi.org/10.2337/dc11-2289

[103]

P. Manna, A.E. Achari, S.K. Jain, Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice, Arch. Biochem. Biophys. (2017) 22-34. https://doi.org/10.1016/j.abb.2017.01.002

[104]

G. Huang, B. Zou, J. Lv, et al., Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway, Int. J. Mol. Med. 39(3) (2017) 559-568. https://doi.org/10.3892/ijmm.2017.2864

[105]

F.E. Hirai, J.M. Tielsch, B. Klein, et al., Ten-year change in vision-related quality of life in type 1 diabetes: Wisconsin epidemiologic study of diabetic retinopathy, Ophthalmology 118(2) (2011) 353-358. https://doi.org/10.1016/j.ophtha.2010.06.022

[106]

D. Petrovič, Candidate genes for proliferative diabetic retinopathy, BioMed Res. Int. 2013(7) (2013) 540416. https://doi.org/10.1155/2013/540416

[107]

G. Jia, V.G. Demarco, J.R. Sowers, Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy, Nat. Rev. Endocrinol. 12(3) (2016) 144-153. https://doi.org/10.1038/nrendo.2015.216

[108]

R. Meshkani, S. Vakili, Tissue resident macrophages: key players in the pathogenesis of type 2 diabetes and its complications, Clin. Chim. Acta. 462 (2016) 77-89. https://doi.org/10.1016/j.cca.2016.08.015

[109]

A. Gordois, P. Scuffham, A. Shearer, et al., The health care costs of diabetic peripheral neuropathy in the US, Diabetes Care. 26(6) (2003) 1790. https://doi.org/10.2337/diacare.26.6.1790

[110]

P.C. Sun, C.D. Kuo, L.Y. Chi, et al., Microcirculatory vasomotor changes are associated with severity of peripheral neuropathy in patients with type 2 diabetes, Diabetes Vasc. Dis. Res. 10(3) (2013) 270. https://doi.org/10.1177/1479164112465443

[111]

J.N., Wu, X.T. Chen, K. Qiao, et al., Purification, structural elucidation, and in vitro antitumor effects of novel polysaccharides from Bangia fuscopurpurea, Food Sci. Hum. Wellness 10(1) (2021) 63-71. https://doi.org/10.1016/j.fshw.2020.05.003

[112]

L.A. Gallo, E.M. Wright, V. Vallon, Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences, Diabetes Vasc. Dis. Re. 12(2) (2015) 78-89. https://doi.org/10.1177/1479164114561992

[113]

H. Kirchner Epigenetic flexibility in metabolic regulation: disease cause and prevention, Trends Cell Biol. 23(5) (2013) 203-209. https://doi.org/10.1016/j.tcb.2012.11.008

[114]

M.A. Saeed, P. Narendran, Dapagliflozin for the treatment of type 2 diabetes: a review of the literature, Drug Des. Dev. Ther. 14(12) (2013) 1695-1703. https://doi.org/10.2147/DDDT.S50963

[115]

Y. Jiao, X. Wang, X. Jiang, et al., Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats, J. Ethnopharmacol. 199 (2017) 119-127. https://doi.org/10.1016/j.jep.2017.02.003

[116]

Y.C. Cheng, L.T. Shiun, H.L. Su, et al., Transdermal delivery systems of natural products applied to skin therapy and care, Molecules 25 (2020) 5051. https://doi.org/10.3390/molecules25215051

[117]

C.C. Chiu, H.L. Chou, P.F. Wu, et al., Bio-functional constituents from the stems of Liriodendron tulipifera, Molecules 17 (2012) 4357-4372. https://doi.org/10.3390/molecules17044357

[118]

S.A. Fatma Saadeldeen, Y. Niu, H.L. Wang, et al., Natural products: regulating glucose metabolism and improving insulin resistance, Food Sci. Hum. Wellness 9 (2020) 214-228. https://doi.org/10.1016/j.fshw.2020.04.005

[119]

L.L. Cui, J.M. Wang, M.K. Wang, et al., Chemical composition and glucose uptake effect on 3T3-L1 adipocytes of Ligustrum lucidum Ait. Flowers, Food Sci. Hum. Wellness 9 (2020) 124-129. https://doi.org/10.1016/j.fshw.2020.02.002

[120]

P. Nain, V. Saini, S. Sharma, et al., Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats, J. Ethnopharmacol. 142(1) (2012) 65-71. https://doi.org/10.1016/j.jep.2012.04.014

[121]

Y. Li, Y. Ding, Minireview: therapeutic potential of myricetin in diabetes mellitus, Food Sci. Hum. Wellness 1(1) (2012) 19-25. https://doi.org/10.1016/j.fshw.2020.06.001

[122]

H. Xiang, D. Sun-Waterhouse, C. Cui, Hypoglycemic polysaccharides from Auricularia auricula and Auricularia polytricha inhibit oxidative stress, NF-κB signaling and proinflammatory cytokine production in streptozotocin-induced diabetic mice, Food Sci. Hum. Wellness 10(1) (2021) 87-93. https://doi.org/10.1016/j.fshw.2020.06.001

[123]

M. Ruan, Y. Bu, F. Wu, et al. Chronic consumption of thermally processed palm oil or canola oil modified gut microflora of rats, Food Sci. Hum. Wellness 10(1) (2020) 94-102. https://doi.org/10.1016/j.fshw.2020.06.005

[124]

H.J. Heerspink, B.A. Perkins, D.H. Fitchett, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes: cardiovascular and kidney effects, Potential Mechanisms and Clinical Applications Circulation 134(10) (2016) 752

Food Science and Human Wellness
Pages 1121-1133
Cite this article:
Ning C, Jiao Y, Wang J, et al. Recent advances in the managements of type 2 diabetes mellitus and natural hypoglycemic substances. Food Science and Human Wellness, 2022, 11(5): 1121-1133. https://doi.org/10.1016/j.fshw.2022.04.004

965

Views

90

Downloads

22

Crossref

20

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 27 January 2021
Revised: 07 March 2021
Accepted: 18 April 2021
Published: 02 June 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return