AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

D-tryptophan triggered epithelial-mesenchymal transition by activating TGF-β signaling pathway

Chong WangFangting WangYanbo WangLinglin Fu( )
Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

D-tryptophan is a special kind of nonprotein amino acid showing multiple physiological functions, but the detailed mechanisms are not fully revealed, impairing its further development and applications. This work was to investigate D-tryptophan physiological function and demonstrate the underlying mechanisms. D-tryptophan suppressed HaCaT cell proliferation but increased cell migration. Specifically, D-tryptophan decreased E-cadherin and increased Snail, Twist, and Slug expression, resulting in the development of an epithelial-mesenchymal transitions (EMT) phenomenon. Moreover, D-tryptophan promoted the expression of transforming growth factor-β (TGF-β) 1, and Smad4 knockout damages D-tryptophan's ability. These results indicated that D-tryptophan stimulated HaCaT cells to produce TGF-β1 and thus activated the TGF-β/Samd pathway, resulting in the triggering of EMT. This study revealed the molecular mechanisms of D-tryptophan activity, provided D-tryptophan as a potential approach for cancer treatment, wound healing, organ development and other relevant applications.

References

[1]

M. Hatta, Y. Miyake, K. Uchida, et al., Keratin 13 gene is epigenetically suppressed during transforming growth factor-beta1-induced epithelialmesenchymal transition in a human keratinocyte cell line, Biochem. Biophys Res. Commun. 496 (2018) 381-386. https://doi.org/10.1016/j.bbrc.2018.01.047.

[2]

M. Hatta, K. Naganuma, K. Kato, et al., 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line, Biochem. Biophys. Res. Commun. 468 (2015) 269-273. https://doi.org/10.1016/j.bbrc.2015.10.115.

[3]

J. Xu, S. Lamouille, R. Derynck, TGF-β-induced epithelial to mesenchymal transition, Cell Res. 19(2) (2009) 156-172. https://doi.org/10.1038/cr.2009.5.

[4]

K. Miyazono, Transforming growth factor-β signaling in epithelialmesenchymal transition and progression of cancer, Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 85 (2009) 314-323. https://doi.org/10.2183/pjab.85.314.

[5]

J.P. Thiery, H. Acloque, R.Y.J. Huang, et al., Epithelial-mesenchymal transitions in development and disease, Cell 139 (2009) 871-890. https://doi.org/10.1016/j.cell.2009.11.007.

[6]

D. Zhu, J. Zhao, A. Lou, et al., Transforming growth factor beta1 promotes fibroblast-like synoviocytes migration and invasion via TGF-beta1/Smad signaling in rheumatoid arthritis, Mol Cell Biochem. 459 (2019) 141-150. https://doi.org/10.1007/s11010-019-03557-0.

[7]

X. Wu, J.D. Zhao, Y.Y. Ruan, et al., Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer, Cell Death Dis. 9(11) (2018) 1102. https://doi.org/10.1038/s41419-018-1101-0.

[8]

X. Tian, G. Wencai, Z. Lingyun, et al., Physical interaction of STAT1 isoforms with TGF-β receptors leads to functional crosstalk between two signaling pathways in epithelial ovarian cancer, J. Exp. Clin. Cancer Res. 37 (2018) 103. https://doi.org/10.1186/s13046-018-0773-8.

[9]

C. Zhang, Y. Hao, Y. Wang, et al., TGF-β/SMAD4-regulated LncRNALINP1 inhibits epithelial-mesenchymal transition in lung cancer, Int. J. Biol. Sci. 14(12) (2018) 1715-1723. https://doi.org/10.7150/ijbs.27197.

[10]

S. Giampieri, C. Manning, S. Hooper, et al., Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility, Nat. Cell Biol. 11 (2009) 1287-1296. https://doi.org/10.1038/ncb1973.

[11]

G. Cantelli, J.L. Orgaz, I. Rodríguezhernández, et al., TGF-β-induced transcription sustains amoeboid melanoma migration and dissemination, Curr. Biol. 25 (2015) 2899-2914. https://doi.org/10.1016/j.cub.2015.09.054.

[12]

L. Levy, C.S. Hill, Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses, Mol. Cell. Biol. 25 (2005) 8108-8125. https://doi.org/10.1128/MCB.25.18.8108-8125.2005.

[13]

S. Koseki, N. Nakamura, T. Shiina, Growth inhibition of Listeria monocytogenes, Salmonella enterica, and Escherichia coli O157:H7 by D-tryptophan as an incompatible solute, J. Food Prot. 78 (2015) 819-824. https://doi.org/10.4315/0362-028x.Jfp-14-374.

[14]

K. Kan, J. Chen, S. Kawamura, et al., Characteristics of D-tryptophan as an antibacterial agent: effect of sodium chloride concentration and temperature on Escherichia coli growth inhibition, J. Food Prot. 81 (2017) 25. https://doi.org/10.4315/0362-028X.JFP-17-229.

[15]

K.S. Brandenburg, K.J. Rodriguez, J.F. McAnulty, et al., Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 57 (2013) 1921-1925. https://doi.org/10.1128/aac.00007-13.

[16]

A.I. Hochbaum, I. Kolodkin-Gal, L. Foulston, et al., Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development, J. Bacteriol. 193 (2011) 5616-5622. https://doi.org/10.1128/jb.05534-11.

[17]

S.A. Leiman, J.M. May, M.D. Lebar, et al., D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis, J. Bacteriol. 195 (2013) 5391-5395. https://doi.org/10.1128/jb.00975-13.

[18]

H. Li, Y. Ye, N. Ling, et al., Inhibitory effects of d-tryptophan on biofilm development by the foodborne Cronobacter sakazakii, Int. Dairy J. 49 (2015) 125-129. https://doi.org/10.1016/j.idairyj.2015.05.001.

[19]

J. Chen, H. Kudo, K. Kan, et al., Growth-inhibitory effect of D-tryptophan on Vibrio spp. in shucked and live oysters, Appl. Environ. Microbiol. 84 (2018). https://doi.org/10.1128/AEM.01543-18.

[20]

Y. Irukayama-Tomobe, H. Tanaka, T. Yokomizo, et al., Aromatic D-amino acids act as chemoattractant factors for human leukocytes through a G protein-coupled receptor, GPR109B, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 3930-3934. https://doi.org/10.1073/pnas.0811844106.

[21]

I. Kepert, J. Fonseca, C. Müller, et al., D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease, J. Allergy Clin. Immunol. 139(5) (2017) 1525-1535. https://doi.org/10.1016/j.jaci.2016.09.003.

[22]

S. Jumpei, S. Masataka, Emerging role of D-amino acid metabolism in the innate defense, Front. Microbiol. 9 (2018) 933. https://doi.org/10.3389/fmicb.2018.00933.

[23]

A. Singh, J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer, Oncogene 29 (2010) 4741-4751. https://doi.org/10.1038/onc.2010.215.

[24]

L. Shi, N. Dong, X. Fang, et al., Regulatory mechanisms of TGF-β1-induced fibrogenesis of human alveolar epithelial cells, J. Cell. Mol. Med. 20(11) (2016) 2183-2193. https://doi.org/10.1111/jcmm.12918.

[25]

Y.H. Lee, A.R. Albig, M. Regner, et al., Fibulin-5 initiates epithelialmesenchymal transition (EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a MMP-dependent mechanism, Carcinogenesis 29 (2008) 2243-2251. https://doi.org/10.1093/carcin/bgn199.

[26]

D. Koinuma, S. Tsutsumi, N. Kamimura, et al., Promoter-wide analysis of Smad4 binding sites in human epithelial cells, Cancer Sci. 100 (2010) 2133-2142. https://doi.org/10.1111/j.1349-7006.2009.01299.x.

[27]

L. Levy, C.S. Hill, Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses, Mol. Cell. Biol. 25 (2005) 8108-8125. https://doi.org/10.1128/mcb.25.18.8108-8125.2005.

[28]

K. Kobayashi, T. Maezawa, H. Tanaka, et al., The identification of D-tryptophan as a bioactive substance for postembryonic ovarian development in the planarian Dugesia ryukyuensis, Sci. Rep. 7 (2017) 13. https://doi.org/10.1038/srep45175.

[29]

G. Allegri, C.V.L. Costa, A. Bertazzo, et al., Enzyme activities of tryptophan metabolism along the kynurenine pathway in various species of animals, Farmaco 58 (2003) 829-836. https://doi.org/10.1016/S0014-827X(03)00140-X.

[30]

G.C. Prendergast, R. Metz, A.J. Muller, Towards a genetic definition of cancer-associated inflammation: role of the IDO pathway, Am. J. Pathol. 176 (2010) 2082-2087. https://doi.org/10.2353/ajpath.2010.091173.

[31]

G.C. Prendergast, Immune escape as a fundamental trait of cancer: focus on IDO, Oncogene 27 (2008) 3889-3900. https://doi.org/10.1038/onc.2008.35.

[32]

X. Qin, J.Y. Liu, T. Wang, et al., Role of indoleamine 2, 3-dioxygenase in an inflammatory model of murine gingiva, J. Periodontal Res. 52(1) (2017) 107-113. https://doi.org/10.1111/jre.12374.

[33]

U. Dhawan, M.W. Sue, K. Chun Lan, et al., Nanochip-induced epithelial to mesenchymal transition: impact of physical microenvironment on cancer metastasis, ACS Appl. Mater. Interfaces. 10(14) (2018) 11474-11485. https://doi.org/10.1021/acsami.7b19467.

[34]

J.H. Cai, L.M. Xia, J.L. Li, et al., Tumor-associated macrophages derived TGF-beta-induced epithelial to mesenchymal transition in colorectal cancer cells through Smad2, 3-4/Snail signaling pathway, Cancer Res. Treat. 51 (2019) 252-266. https://doi.org/10.4143/crt.2017.613.

Food Science and Human Wellness
Pages 1215-1221
Cite this article:
Wang C, Wang F, Wang Y, et al. D-tryptophan triggered epithelial-mesenchymal transition by activating TGF-β signaling pathway. Food Science and Human Wellness, 2022, 11(5): 1215-1221. https://doi.org/10.1016/j.fshw.2022.04.014

476

Views

40

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 10 January 2021
Revised: 07 February 2021
Accepted: 09 May 2021
Published: 02 June 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return