AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (686.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fabrication and evaluation of a portable and reproducible quartz crystal microbalance immunochip for label-free detection of β-lactoglobulin allergen in milk products

Mingfei Pana,bLiping Honga,bJingying Yanga,bXiaoqian Xiea,bKaixin Liua,bShuo Wanga,b( )
Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

In this study, a label-free, portable and reproducible immunochip based on quartz crystal microbalance (QCM) was developed for the qualitative detection of β-lactoglobulin (β-LG), an allergen, in milk products. Experimental parameters in the fabrication and regeneration procedure such as pH of the coupling microenvironment, amount of anti-β-LG antibody and regeneration reagent were optimized in detail. Under optimal conditions, the proposed QCM immunochip exhibited good recognition of β-LG, with a calibration curve of ΔF = 12.877Cβ-LG0.4809 (R2 = 0.9982) and limit of detection of 0.04 μg/mL. Additionally, this portable QCM immunochip had good stability, high specificity, and no obvious cross-reaction to three other milk proteins (α-casein, α-lactalbumin, and lactoferrin). It could compete a qualitative measurement within 5 min, and could be reused at least ten times. In the β-LG analysis of actual milk samples, the developed QCM immunochip yielded reliable and accurate results, which correlated strongly with those from the standard HPLC method (R2 = 0.9969). Thus, the portable, stable, and reproducible QCM immunochip developed in this study allowed the rapid, cost-effectively and sensitively measure the β-LG in milk products.

References

[1]

M.A. Ciardiello, M. Tamburrini, M. Liso, et al., Food allergen profiling: a big challenge, Food Res. Int. 54 (2013) 1033-1041. http://dx.doi.org/10.1016/j.foodres.2013.03.013.

[2]

H.A. Sampson, L. O'Mahony, A.W. Burks, et al., Mechanisms of food allergy, J. Allergy Clin. Immun. 141 (2018) 11-19. http://dx.doi.org/10.1016/j.jaci.2017.11.005.

[3]

W. Dzwolak, Assessment of food allergen management in small food facilities, Food Control 73 (2017) 323-331. http://dx.doi.org/10.1016/j.foodcont.2016.08.019.

[4]

S.M. Gendel, Comparison of international food allergen labeling regulations, Regul. Toxicol. Pharm. 63 (2012) 279-285. http://dx.doi.org/10.1016/j.yrtph.2012.04.007.

[5]

D. Asioli, J. Aschemann-Witzel, R. Nayga, Sustainability-related food labels, Annu. Rev. Resour. Econ. 12 (2020) 171-185. http://dx.doi.org/10.1146/annurev-resource-100518-094103.

[6]

C. Villa, J. Costa, M.B.P.P. Oliveira, et al., Bovine milk allergens: a comprehensive review, Compr. Rev. Food Sci. F. 17 (2018) 137-164. http://dx.doi.org/10.1111/1541-4337.12318.

[7]

E.W. Alice-Hoyt, T. Medico, S.P. Commins, Breast milk and food allergy connections and current recommendations, Pediatr. Clin. N. AM. 62 (2015) 1493. http://dx.doi.org/10.1016/j.pcl.2015.07.014.

[8]

T. Nicolai, M. Britten, C. Schmitt, β-Lactoglobulin and WPI aggregates: formation, structure and applications, Food Hydrocoll. 25 (2011) 1945-1962. http://dx.doi.org/10.1016/j.foodhyd.2011.02.006.

[9]

T. Ito, N. Aoki, A. Tsuchiya, et al., Sequential analysis of β-lactoglobulin for allergen check using QCM with a passive flow system, Chem. Lett. 44 (2015) 981-983. http://dx.doi.org/10.1246/cl.150309.

[10]

P. Marija, V.R. Manon, S.V. Dragana, et al., Glycation of the major milk allergen β-lactoglobulin changes its allergenicity by alterations in cellular uptake and degradation, Mol. Nutr. Food Res. 62 (2018) 1800341. http://dx.doi.org/10.1002/mnfr.201800341.

[11]

M. Yang, M.Z. Tan, J.L. Wu, et al., Prevalence, characteristics, and outcome of cow's milk protein allergy in Chinese infants: a population-based survey, Jpen-Parenter. Enter. 43 (2019) 803-808. http://dx.doi.org/10.1002/jpen.1472.

[12]

J. Ge, X.Y. Yu, S. Wang, et al., Nanocomplexes composed of chitosan derivatives and β-lactoglobulin as a carrier for anthocyanins: preparation, stability and bioavailability in vitro, Food Res. Int. 116 (2019) 336-345. http://dx.doi.org/10.1016/j.foodres.2018.08.045.

[13]

L.S. Simoes, L. Abrunhosa, A.A. Vicente, et al., Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds, Food Hydrocoll. 101 (2020) 105492. http://dx.doi.org/10.1016/j.foodhyd.2019.105492.

[14]

L.I. Boitz, G Fiechter, R.K. Seifried, et al., A novel ultra-high performance liquid chromatography method for the rapid determination of β-lactoglobulin as heat load indicator in commercial milk samples, J. Chromatogr. A 1386 (2015) 98-102. http://dx.doi.org/10.1016/j.chroma.2015.01.081.

[15]

X.K. Sun, C.G. Li, Q.Y. Zhu, et al., A label-free photoelectrochemical immunosensor for detection of the milk allergen β-lactoglobulin based on Ag2S-sensitized spindle-shaped BiVO4/BiOBr heterojunction by an in situ growth method, Anal. Chim. Acta 1140 (2020) 122-131. http://dx.doi.org/10.1016/j.aca.2020.10.021.

[16]

D. Croote, S.R. Quake, Food allergen detection by mass spectrometry: the role of systems biology, NPJ Syst. Biol. Appl. 2 (2016) 16022. http://dx.doi.org/10.1038/npjsba.2016.22.

[17]

J. Ji, P. Zhu, F.W. Pi, et al., Development of a liquid chromatography-tandem mass spectrometry method for simultaneous detection of the main milk allergens, Food Control 74 (2017) 79-88. http://dx.doi.org/10.1016/j.foodcont.2016.11.030.

[18]

M.Li, L. Jiao, S.Q. Liu, et al., A new ratiometric electrochemical immunoassay for reliable detection of nuclear matrix protein 22, Anal. Chim. Acta. 1086 (2019) 103-109. http://dx.doi.org/10.1016/j.aca.2019.08.017.

[19]

S.X. Wu, H.L. Tan, C.H. Wang, et al., A colorimetric immunoassay based on coordination polymer composite for the detection of carcinoembryonic antigen, ACS Appl. Mater. Inter. 11 (2019) 43031-43038. http://dx.doi.org/10.1021/acsami.9b18472.

[20]

K. Ito, T. Yamamoto, Y. Oyama, et al., Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests, Anal. Bioanal. Chem. 408 (2016) 5973-5984. http://dx.doi.org/10.1007/s00216-016-9438-7.

[21]

J. Masiri, B. Barrios-Lopez, L. Benoit, Development and validation of a lateral flow immunoassay test kit for dual detection of casein and β-lactoglobulin residues, J. Food Protect. 79 (2016) 477-483. http://dx.doi.org/10.4315/0362-028X.JFP-15-364.

[22]

J. Orcajo, M. Lavilla, I. Martinez-de-Maranon, Specific and sensitive elisa for measurement of IgE-binding variations of milk allergen β-lactoglobulin in processed foods, Anal. Chim. Acta. 1052 (2019) 163-169. http://dx.doi.org/10.1016/j.aca.2018.11.048.

[23]

N.J. Fu, L.T. Li, K.J. Liu, et al., A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe3O4 particles and MoS2 sheets (poly(ChCl-AA DES)@Fe3O4@MoS2) with specific recognition and good antibacterial properties for β-lactoglobulin in milk, Talanta 197 (2019) 567-577. http://dx.doi.org/10.1016/j.talanta.2019.01.072.

[24]

O. Surucu, S. Abaci, Electrochemical determination of β-lactoglobulin in whey proteins, J. Food Meas Charact. 14 (2020) 11-19. http://dx.doi. org/10.1007/s11694-019-00262-w.

[25]

Y. Sun, J.Z. Lu, Chemiluminescence-based aptasensors for various target analytes, Luminescence 33 (2018) 1298-1305. http://dx.doi.org/10.1002/bio.3557.

[26]

B. Prieto-Simon, N.M. Bandaru, C. Saint, et al., Tailored carbon nanotube immunosensors for the detection of microbial contamination, Biosens. Bioelectron. 67 (2015) 642-648. http://dx.doi.org/10.1016/j.bios.2014.09.089.

[27]

J. Goode, G. Dillon, P.A. Millner, The development and optimisation of nanobody based electrochemical immunosensors for IgG, Sensor. Actuat. B-Chem. 234 (2016) 478-484. http://dx.doi.org/10.1016/j.snb.2016.04.132.

[28]

M. Giannetto, V. Bianchi, S. Gentili, An integrated IoT-Wi-Fi board for remote data acquisition and sharing from innovative immunosensors. Case of study: diagnosis of celiac disease, Sensor. Actuat. B-Chem. 273 (2018) 1395-1403. http://dx.doi.org/10.1016/j.snb.2018.07.056.

[29]

C. Ricciardi, K. Santoro, S. Stassi, et al., Microcantilever resonator arrays for immunodetection of β-lactoglobulin milk allergen, Sensor. Actuat. B-Chem. 254 (2018) 613-617. http://dx.doi.org/10.1016/j.snb.2017.07.150.

[30]

J. Ashley, R. D'Aurelio, M. Piekarska, et al., Development of a β-lactoglobulin sensor based on SPR for milk allergens detection, Biosensors-Basel 8 (2018) 32. http://dx.doi.org/10.3390/bios8020032.

[31]

K.Y. Liu, S.Z. Jin, Z.B. Song, et al., Label-free surface-enhanced Raman spectroscopy of serum based on multivariate statistical analysis for the diagnosis and staging of lung adenocarcinoma, Vib. Spectrosc. 100 (2019) 177-184. http://dx.doi.org/10.1016/j.vibspec.2018.12.007.

[32]

S.Q. Wu, Y.Y. Guo, W.J. Wang, et al., Label-free biosensing using a microring resonator integrated with poly-(dimethylsiloxane) microfluidic channels, Rev. Sci. Instrum. 90 (2019) 035004, http://dx.doi.org/10.1063/1.5074134.

[33]

M.V. Voinova, M. Jonson, B. Kasemo, Missing mass' effect in biosensor's QCM applications, Biosens. Bioelectron. 17 (2002) 835-841. http://dx.doi.org/10.1016/S0956-5663(02)00050-7.

[34]

K.A. Marx, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecules 4 (2003) 1099-1120. http://dx.doi.org/10.1021/bm020116i.

[35]

Y. Tang, D.Y. Tang, J. Zhang, et al., Novel quartz crystal microbalance immunodetection of aflatoxin B-1 coupling cargo-encapsulated liposome with indicator-triggered displacement assay, Anal. Chim. Acta. 1031 (2018) 161-168. http://dx.doi.org/10.1016/j.aca.2018.05.027.

[36]

A. Vazquez-Quesada, M.M. Schofield, A. Tsortos, et al., Hydrodynamics of quartz-crystal-microbalance DNA sensors based on liposome amplifiers, Phys. Rev. Appl. 13 (2020) 064059. http://dx.doi.org/10.1103/PhysRevApplied.13.064059.

Food Science and Human Wellness
Pages 1315-1321
Cite this article:
Pan M, Hong L, Yang J, et al. Fabrication and evaluation of a portable and reproducible quartz crystal microbalance immunochip for label-free detection of β-lactoglobulin allergen in milk products. Food Science and Human Wellness, 2022, 11(5): 1315-1321. https://doi.org/10.1016/j.fshw.2022.04.015

434

Views

40

Downloads

6

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 13 September 2020
Revised: 20 December 2020
Accepted: 26 March 2021
Published: 02 June 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return