AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Alteration of fecal microbiome and metabolome by mung bean coat improves diet-induced non-alcoholic fatty liver disease in mice

Dianzhi Houa,bJian TangaMeili HuancFang LiudSumei Zhoua( )Qun Shenb( )
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing 100083, China
COFCO Nutrition and Health Research Institute, Beijing 102209, China
College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Dysbiosis of gut microbiota and its derived metabolites has been linked to the occurrence and development of nonalcoholic fatty liver disease. Our previous study has demonstrated that mung bean coat (MBC) might be mainly responsible for the beneficial effects of whole mung bean on high fat diet (HFD)-induced metabolic disorders. To investigate whether MBC, which is rich in dietary fiber and phytochemicals, can protect against HFD-induced hepatic steatosis in mice via targeting gut microbiota and its metabolites, we conducted this study. Results showed that MBC could effectively alleviative the obese phenotype, reduce the lipid accumulation and insulin resistance, and improve the hepatic oxidative stress and inflammatory response. Furthermore, MBC significantly prevented the HFD-induced changes in the structure and composition of gut microbiota, characterized by promoting the bloom of Akkermansia, Lachnospiraceae_NK4A136_group, and norank_f_Muribaculaceae, and along with the elevated short-chain fatty acids concentrations. Non-targeted metabolomic analysis indicated a metabolism disorder that was obviously improved by MBC via regulating sphingolipid metabolism and α-linolenic acid metabolism. These findings suggested that MBC could improve hepatic steatosis through manipulating the crosstalk between gut microbiota and its metabolites.

References

[1]

F. Bessone, M.V. Razori, M.G. Roma, Molecular pathways of nonalcoholic fatty liver disease development and progression, Cell. Mol. Life Sci. 76(1)(2019) 99-128. https://doi.org/10.1007/s00018-018-2947-0.

[2]

P. Golabi, J.M. Paik, S. AlQahtani, et al., The burden of nonalcoholic fatty liver disease in asia, middle east and north africa: data from global burden of disease 2009-2019, J. Hepatol. 75(4) (2021) 795-809. https://doi.org/10.1016/j.jhep.2021.05.022.

[3]

Y. Ji, Y. Yin, Z. Li, et al., Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD), Nutrients 11(8) (2019) 1712. https://doi.org/10.3390/nu11081712.

[4]

N. Hossain, P. Kanwar, S.R. Mohanty, A comprehensive updated review of pharmaceutical and nonpharmaceutical treatment for NAFLD, Gastroenterol.Res. Pract. 2016 (2016) 7109270. https://doi.org/10.1155/2016/7109270.

[5]

Q. Yang, Q. Liang, B. Balakrishnan, et al., Role of dietary nutrients in the modulation of gut microbiota: a narrative review, Nutrients 12(2) (2020)381. https://doi.org/10.3390/nu12020381.

[6]

L. Zhu, S.S. Baker, C. Gill, et al., Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH, Hepatology 57(2) (2013) 601-609.https://doi.org/10.1002/hep.26093.

[7]

N. Jiao, R. Loomba, Z.H. Yang, et al., Alterations in bile acid metabolizing gut microbiota and specific bile acid genes as a precision medicine to subclassify NAFLD, Physiol. Genomics 53(8) (2021) 336-348.https://doi.org/10.1152/physiolgenomics.00011.2021.

[8]

F. Bäckhed, J.K. Manchester, C.F. Semenkovich, et al., Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proc. Natl. Acad. Sci. 104(3) (2007) 979-984. https://doi.org/10.1073/pnas.0605374104.

[9]

T. Le Roy, M. Llopis, P. Lepage, et al., Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice, Gut 62(12) (2013)1787-1794. https://doi.org/10.1136/gutjnl-2012-303816.

[10]

Z.H. Zhao, J.K.L. Lai, L. Qiao, et al., Role of gut microbial metabolites in nonalcoholic fatty liver disease, J. Dig. Dis. 20(4) (2019) 181-188.https://doi.org/10.1111/1751-2980.12709.

[11]

Y. Ni, L. Ni, F. Zhuge, Z. Fu, The gut microbiota and its metabolites, novel targets for treating and preventing non-alcoholic fatty liver disease, Mol. Nutr. Food Res. 64(17) (2020) 2000375. https://doi.org/10.1002/mnfr.202000375.

[12]

Y. Ding, K. Yanagi, C. Cheng, et al., Interactions between gut microbiota and non-alcoholic liver disease: the role of microbiota-derived metabolites. Pharmacol. Res. 141 (2019) 521-529. https://doi.org/10.1016/j.phrs.2019.01.029.

[13]

L. Zhong, Z. Fang, M.L. Wahlqvist, et al., Seed coats of pulses as a food ingredient: characterization, processing, and applications, Trends Food Sci.Technol. 80 (2018) 35-42. https://doi.org/10.1016/j.tifs.2018.07.021.

[14]

D. Hou, Q. Zhao, L. Yousaf, et al., A comparison between whole mung bean and decorticated mung bean: beneficial effects on the regulation of serum glucose and lipid disorders and the gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice, Food Funct. 11(6) (2020)https://doi.org/5525-5537.10.1039/D0FO00379D.

[15]

D. Hou, F. Liu, X. Ren, et al., Protective mechanism of mung bean coat against hyperlipidemia in mice fed with a high-fat diet: insight from hepatic transcriptome analysis, Food Funct. 12(24) (2021) 12434-12447.https://doi.org/10.1039/D1FO02455H.

[16]

S. Sae-tan, T. Kumrungsee, N. Yanaka, Mungbean seed coat water extract inhibits inflammation in LPS-induced acute liver injury mice and LPS-stimulated RAW 246.7 macrophages via the inhibition of TAK1/IκBα/NF-κB, J. Food Sci. Technol. Mysore 57(7) (2020) 2659-2668.https://doi.org/10.1007/s13197-020-04302-y.

[17]

N. Sihag, A. Kawatra, Hypolipidemic effect of pulse seed coats in rats, Plant Food Hum. Nutr. 58(3) (2003) 1-10. https://doi.org/10.1023/B:QUAL.0000040308.35334.8c.

[18]

J. Luo, W. Cai, T. Wu, et al., Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and antidiabetic activities, Food Chem. 201 (2016) 350-360. https://doi.org/10.1016/j.foodchem.2016.01.101.

[19]

J.M. Monk, W. Wu, D. Lepp, et al., Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype, J. Nutr. Biochem. 70 (2019) 91-104.https://doi.org/10.1016/j.jnutbio.2019.04.009.

[20]

D. Hou, Q. Zhao, L. Yousaf, et al., Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice, Eur. J. Nutr. 60(4) (2021) 2029-2045.https://doi.org/10.1007/s00394-020-02395-x.

[21]

D. Hou, Q. Zhao, L. Yousaf, et al., Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet, J. Funct.Food 64 (2020) 103687. https://doi.org/10.1016/j.jff.2019.103687.

[22]

R.H. Wang, C. Li, C.X. Deng, Liver steatosis and increased ChREBP expression in mice carrying a liver specific sirt1 null mutation under a normal feeding condition, Int. J. Biol. Sci. 6(7) (2010) 682-690.https://doi.org/10.7150/ijbs.6.682.

[23]

W. Li, K. Zhang, H. Yang, Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: possible role of short-chain fatty acids and gut microbiota regulated by pectin, J. Agric. Food Chem. 66(30)(2018) 8015-8025. https://doi.org/10.1021/acs.jafc.8b02979.

[24]

Y. Liu, Y. Luo, X. Wang, et al., Gut microbiome and metabolome response of pu-erh tea on metabolism disorder induced by chronic alcohol consumption, J. Agric. Food Chem. 68(24) (2020) 6615-6627.https://doi.org/10.1021/acs.jafc.0c01947.

[25]

D. Hou, Q. Zhao, B. Chen, et al., Dietary supplementation with mung bean coat alleviates the disorders in serum glucose and lipid profile and modulates gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice, J.Food Sci. 86(9) (2021) 4183-4196. https://doi.org/10.1111/1750-3841.15866.

[26]

H. Ferreira, M. Vasconcelos, A.M. Gil, et al., Bene fits of pulse consumption on metabolism and health: a systematic review of randomized controlled trials, Crit. Rev. Food Sci. Nutr. (2020) 1-12. https://doi.org/10.1080/104083 98.2020.1716680.

[27]

D. Hou, Q. Zhao, L. Yousaf, et al., Whole mung bean (Vigna radiata L.)supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice, Eur. J. Nutr. 59(8) (2020)3617-3634. https://doi.org/10.1007/s00394-020-02196-2.

[28]

D. Hou, L. Yousaf, Y. Xue, et al., Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits, Nutrients 11(6)(2019) 1238. https://doi.org/10.3390/nu11061238.

[29]

A.J. Amor, V. Perea, Dyslipidemia in nonalcoholic fatty liver disease, Curr. Opin. Endocrinol. Diabetes Obes. 26(2) (2019) 103-108.https://doi.org/10.1097/med.0000000000000464.

[30]

H. Tilg, T.E. Adolph, A.R. Moschen, Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade, Hepatology 73(2)(2021) 833-842. https://doi.org/10.1002/hep.31518.

[31]

M. Monserrat-Mesquida, M. Quetglas-Llabrés, M. Abbate, et al., Oxidative stress and pro-inflammatory status in patients with non-alcoholic fatty liver disease, Antioxidants 9(8) (2020) 759. https://doi.org/10.3390/antiox9080759.

[32]

C. Di Lorenzo, F. Colombo, S. Biella, et al., Polyphenols and human health: the role of bioavailability, Nutrients 13(1) (2021) 273.https://doi.org/10.3390/nu13010273.

[33]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature 444(7122)(2006) 1027-1031. https://doi.org/10.1038/nature05414.

[34]

V.K. Ridaura, J.J. Faith, F.E. Rey, et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice, Science 341(6150)(2013) 1241214. https://doi.org/10.1126/science.1241214.

[35]

K.T. Suk, D.J. Kim, Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease, Expert Rev. Gastroenterol. Hepatol. 13(3)(2019) 193-204. https://doi.org/10.1080/17474124.2019.1569513.

[36]

S.D. Burz, M. Monnoye, C. Philippe, et al., Fecal microbiota transplant from human to mice gives insights into the role of the gut microbiota in nonalcoholic fatty liver disease (NAFLD), Microorganisms 9(1) (2021) 199.https://doi.org/10.3390/microorganisms9010199.

[37]

J. Aron-Wisnewsky, M.V. Warmbrunn, M. Nieuwdorp, et al., Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity?Gastroenterology 158(7) (2020) 1881-1898. https://doi.org/10.1053/j.gastro.2020.01.049.

[38]

H. Liu, H. Zhu, H. Xia, et al., Different effects of high-fat diets rich in different oils on lipids metabolism, oxidative stress and gut microbiota, Food Res. Int. 141 (2021) 110078. https://doi.org/10.1016/j.foodres.2020.110078.

[39]

L. Crovesy, D. Masterson, E.L. Rosado, Profile of the gut microbiota of adults with obesity: a systematic review, Eur. J. Clin. Nutr. 74(9) (2020)1251-1262. https://doi.org/10.1038/s41430-020-0607-6.

[40]

L. Zhu, R.D. Baker, S.S. Baker, Gut microbiome and nonalcoholic fatty liver diseases, Pediatr. Res. 77(1) (2015) 245-251. https://doi.org/10.1038/pr.2014.157.

[41]

F. Magne, M. Gotteland, L. Gauthier, et al., The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12(5)(2020) 1474. https://doi.org/10.3390/nu12051474.

[42]

S.H. Duncan, G.E. Lobley, G. Holtrop, et al., Human colonic microbiota associated with diet, obesity and weight loss, Int. J. Obes. 32(11) (2008)1720-1724. https://doi.org/10.1038/ijo.2008.155.

[43]

A. Schwiertz, D. Taras, K. Schäfer, et al., Microbiota and SCFA in lean and overweight healthy subjects, Obesity 18(1) (2010) 190-195.https://doi.org/10.1038/oby.2009.167.

[44]

M. Aguirre, K. Venema, Does the gut microbiota contribute to obesity?going beyond the gut feeling, Microorganisms 3(2) (2015) 213-235.https://doi.org/10.3390/microorganisms3020213.

[45]

Y. Fan, O. Pedersen, Gut microbiota in human metabolic health and disease, Nat. Rev. Microbiol. 19(1) (2021) 55-71. https://doi.org/10.1038/s41579-020-0433-9.

[46]

Z. Shi, H. Lei, G. Chen, et al., Impaired intestinal Akkermansia muciniphila and aryl hydrocarbon receptor ligands contribute to nonalcoholic fatty liver disease in mice, mSystems 6(1) (2021) e00985-00920.https://doi.org/10.1128/mSystems.00985-20.

[47]

S. Park, S.M. Cho, B.R. Jin, et al., Mixture of blackberry leaf and fruit extracts alleviates non-alcoholic steatosis, enhances intestinal integrity, and increases Lactobacillus and Akkermansia in rats, Exp. Biol. Med. 244(18)(2019) 1629-1641. https://doi.org/10.1177/1535370219889319.

[48]

A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc.Natl. Acad. Sci. 110(22) (2013) 9066-9071. https://doi.org/10.1073/pnas.1219451110.

[49]

R. Duan, X. Guan, K. Huang, et al., Flavonoids from whole-grain oat alleviated high-fat diet-induced hyperlipidemia via regulating bile acid metabolism and gut microbiota in mice, J. Agric. Food Chem. 69(27) (2021)7629-7640. https://doi.org/10.1021/acs.jafc.1c01813.

[50]

F. Yang, B. Feng, Y.J. Niu, et al., Fu instant tea ameliorates fatty liver by improving microbiota dysbiosis and elevating short-chain fatty acids in the intestine of mice fed a high-fat diet, Food Biosci. 42 (2021) 101207.https://doi.org/10.1016/j.fbio.2021.101207.

[51]

D. Liu, B. Wen, K. Zhu, et al., Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity, Appl. Microbiol. Biotechnol. 103(13) (2019)5269-5283. https://doi.org/10.1007/s00253-019-09764-5.

[52]

W. Tang, X. Yao, F. Xia, et al., Modulation of the gut microbiota in rats by hugan qingzhi tablets during the treatment of high-fat-diet-induced nonalcoholic fatty liver disease, Oxidative Med. Cell. Longev. 2018 (2018)7261619. https://doi.org/10.1155/2018/7261619.

[53]

A. Koh, F. De Vadder, P. Kovatcheva-Datchary, et al., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell 165(6) (2016) 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041.

[54]

X. Li, L. Yang, J. Li, et al., A flavonoid-rich Smilax china L. extract prevents obesity by upregulating the adiponectin-receptor/AMPK signalling pathway and modulating the gut microbiota in mice, Food Funct. 12(13) (2021) 5862-5875. https://doi.org/10.1039/D1FO00282A.

[55]

J. He, P. Zhang, L. Shen, et al., Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism, Int.J. Mol. Sci. 21(17) (2020) 6356. https://doi.org/10.3390/ijms21176356.

[56]

A. Hliwa, B. Ramos-Molina, D. Laski, et al., The role of fatty acids in nonalcoholic fatty liver disease progression: an update, Int. J. Mol. Sci. 22(13)(2021) 6900. https://doi.org/10.3390/ijms22136900.

[57]

S. Zhang, J. Zhao, F. Xie, et al., Dietary fiber-derived short-chain fatty acids: a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease, Obes. Rev. 22(11) (2021) e13316. https://doi.org/10.1111/obr.13316.

[58]

I. Kimura, K. Ozawa, D. Inoue, et al., The gut microbiota suppresses insulinmediated fat accumulation via the short-chain fatty acid receptor GPR43, Nat. Commun. 4(1) (2013) 1829. https://doi.org/10.1038/ncomms2852.

[59]

T. Kondo, M. Kishi, T. Fushimi, et al., Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation, J. Agric. Food Chem. 57(13) (2009) 5982-5986.https://doi.org/10.1021/jf900470c.

[60]

M.S. Zaibi, C.J. Stocker, J. O'Dowd, et al., Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids, FEBS Lett. 584(11) (2010) 2381-2386. https://doi.org/10.1016/j.febslet.2010.04.027

[61]

D.J. Morrison, T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes. 7(3) (2016)189-200. https://doi.org/10.1080/19490976.2015.1134082.

[62]

W. Liu, X. Luo, J. Tang, et al., A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier, Eur. J. Nutr. 60(5) (2021) 2317-2330. https://doi.org/10.1007/s00394-020-02431-w.

[63]

J. Iqbal, M.T. Walsh, S.M. Hammad, et al., Sphingolipids and lipoproteins in health and metabolic disorders, Trends Endocrinol. Metab. 28(7) (2017) 506-518. https://doi.org/10.1016/j.tem.2017.03.005.

[64]

A. Aguilera-Romero, C. Gehin, H. Riezman, Sphingolipid homeostasis in the web of metabolic routes, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841(5) (2014) 647-656. https://doi.org/10.1016/j.bbalip.2013.10.014.

[65]

M. Régnier, A. Polizzi, H. Guillou, et al., Sphingolipid metabolism in non-alcoholic fatty liver diseases, Biochimie 159 (2019) 9-22. https://doi.org/10.1016/j.biochi.2018.07.021.

[66]
Q. Yuan, F. Xie, W. Huang, et al., The review of alpha-linolenic acid: sources, metabolism, and pharmacology, Phytother. Res. https://doi.org/10.1002/ptr.7295.
[67]

H. Cui, Y. Li, M. Cao, et al., Untargeted metabolomic analysis of the effects and mechanism of nuciferine treatment on rats with nonalcoholic fatty liver disease, Front. Pharmacol. 11 (2020) 858. https://doi.org/10.3389/fphar.2020.00858.

[68]

X. Gao, S. Chang, S. Liu, et al., Correlations between α-linolenic acidimproved multitissue homeostasis and gut microbiota in mice fed a highfat diet, mSystems 5(6) (2020) e00391-00320. https://doi.org/10.1128/mSystems.00391-20.

Food Science and Human Wellness
Pages 1259-1272
Cite this article:
Hou D, Tang J, Huan M, et al. Alteration of fecal microbiome and metabolome by mung bean coat improves diet-induced non-alcoholic fatty liver disease in mice. Food Science and Human Wellness, 2022, 11(5): 1259-1272. https://doi.org/10.1016/j.fshw.2022.04.023

665

Views

43

Downloads

24

Crossref

24

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 17 November 2021
Revised: 20 December 2021
Accepted: 18 January 2022
Published: 02 June 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return