AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Vitamin C exerts anti-cadmium induced fracture functions/targets: bioinformatic and biostructural findings

Rong Lia,1Songzuo Yub,1Xiao LiangaYu LiaKeng Po Laia( )
Laboratory of Environmental Pollution and Integrative Omics, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
Department of Neurosurgery, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, China

1 They contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Background

Epidemiological data indicate an association between cadmium exposure and risk of bone fracture; however, clinical treatment of cadmium-induced fracture is limited. Although vitamin C (VC) reportedly reduces cadmium-induced fracture, its pharmacological mechanism remains unexplored.

Methods

Thus, we used a network pharmacology approach and molecular docking analysis to identify core targets, functional processes, and biological pathways involved in the anti-fracture action of VC.

Results

Bioinformatics identified 17 intersection targets of VC and cadmium-induced fracture. Nine core targets were characterized, including tumor protein p53, epidermal growth factor receptor, proto-oncogene c, mitogen-activated protein kinase-1 (MAPK1), MAPK3, signal transducer and activator of transcription-3, MAPK14, prostaglandin-endoperoxide synthase 2, and estrogen receptor alpha. Interestingly, findings of molecular docking analysis indicated that VC exerted effective binding capacity in cadmium-induced fracture. Furthermore, biological processes, cell components, molecular functions, and pharmacological pathways involved in the action of VC against cadmium-induced fracture were identified and visualized.

Conclusions

Based on these findings, we conclude that VC exhibits its anti-cadmium-induced fracture effects by promoting osteoblastic regeneration and proliferation, and inhibiting inflammatory stress. The core targets may serve as biomarkers for diagnosing cadmium-induced fractures.

References

[1]

R.A.A. Meena, P. Sathishkumar, F. Ameen, et al., Heavy metal pollution in immobile and mobile components of lentic ecosystems-a review, Environ.Sci. Pollut. Res. Int. 25 (2018) 4134-4148. https://doi.org/10.1007/s11356-017-0966-2.

[2]

K.I. Ohba, Transport and toxicity of cadmium, Nihon. Eiseigaku. Zasshi. 73(2018) 269-274. https://doi.org/10.1265/jjh.73.269.

[3]

S. Satarug, Dietary cadmium intake and its effects on kidneys, Toxics 6(2018) 15. https://doi.org/10.3390/toxics6010015.

[4]

A. Rani, A. Kumar, A. Lal, et al., Cellular mechanisms of cadmium-induced toxicity: a review, Int. J. Environ. Health Res. 24 (2014) 378-399. https://doi.org/10.1080/09603123.2013.835032.

[5]

T.J. Aspray, T.R. Hill, Osteoporosis and the ageing skeleton, Subcell.Biochem. 91 (2019) 453-476. https://doi.org/10.1007/978-981-13-3681-2_16.

[6]

V. Fischer, M. Haffner-Luntzer, M. Amling, et al., Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover, Eur. Cell Mater. 35(2018) 365-385. https://doi.org/10.22203/eCM.v035a25.

[7]

X. Chen, Z. Wang, G. Zhu, et al., The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population, J. Expo. Sci. Environ. Epidemiol. 29 (2019) 435-443.https://doi.org/10.1038/s41370-018-0057-6.

[8]

L.D. Thomas, K. Michaëlsson, B. Julin, et al., Dietary cadmium exposure and fracture incidence among men: a population-based prospective cohort study, J. Bone Miner. Res. 26 (2011) 1601-1608. https://doi.org/10.1002/jbmr.386.

[9]

M. Wallin, L. Barregard, G. Sallsten, et al., Low-level cadmium exposure is associated with decreased bone mineral density and increased risk of incident fractures in elderly men: the MrOS Sweden study, J. Bone Miner. Res. 31(2016) 732-741. https://doi.org/10.1002/jbmr.2743.

[10]

H.E. Sauberlich, Pharmacology of vitamin C, Annu. Rev. Nutr. 14 (1994)371-391. https://doi.org/10.1146/annurev.nu.14.070194.002103.

[11]

D.E. Abou-Kassem, M.E. Abd El-Hack, A.E. Taha, et al., Detoxification impacts of ascorbic acid and clay on laying japanese quail fed diets polluted by various levels of cadmium, Animals (Basel) 10 (2020) 372.https://doi.org/10.3390/ani10030372.

[12]

T.H. Ciesielski, J. Schwartz, D.C. Bellinger, et al., Iron-processing genotypes, nutrient intakes, and cadmium levels in the Normative Aging Study: evidence of sensitive subpopulations in cadmium risk assessment, Environ. Int. 119 (2018) 527-535. https://doi.org/10.1016/j.envint.2018.06.040.

[13]

T. Kleszczewski, E. Kleszczewska, L. Buzun, et al., Levels of L-ascorbic acid and cadmium in the saphenous vein of patients with coronary artery disease are negatively correlated, J. Trace. Elem. Med. Biol. 36 (2016) 22-26. https://doi.org/10.1016/j.jtemb.2016.03.011.

[14]

M.J. Martínez-Ramírez, S. Palma Pérez, A.D. Delgado-Martínez, et al., Vitamin C, vitamin B12, folate and the risk of osteoporotic fractures.a case-control study, Int. J. Vitam. Nutr. Res. 77 (2007) 359-368.https://doi.org/10.1024/0300-9831.77.6.359.

[15]

F. Aïm, S. Klouche, A. Frison, et al., Efficacy of vitamin C in preventing complex regional pain syndrome after wrist fracture: a systematic review and meta-analysis, Orthop. Traumatol. Surg. Res. 103 (2017) 465-470.https://doi.org/10.1016/j.otsr.2016.12.021

[16]

K. Hill-Mündel, J. Schlegl, H.K. Biesalski, et al., Preoperative ascorbic acid levels in proximal femur fracture patients have no postoperative clinical impact, while ascorbic acid levels upon discharge have a major effect on postoperative outcome, J. Clin. Med. 9 (2019) 66. https://doi.org/10.3390/jcm9010066.

[17]

J. Li, C. Guo, X. Lu, et al., Anti-colorectal cancer biotargets and biological mechanisms of puerarin: study of molecular networks, Eur. J. Pharmacol.858 (2019) 172483. https://doi.org/10.1016/j.ejphar.2019.172483.

[18]

R. Li, C. Guo, Y. Li, et al., Therapeutic target and molecular mechanism of vitamin C-treated pneumonia: a systematic study of network pharmacology, Food Funct. 11 (2020) 4765-4772. https://doi.org/10.1039/d0fo00421a.

[19]

R. Zhou, K. Wu, M. Su, et al., Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma, Environ. Toxicol. Pharmacol. 70 (2019) 103200.https://doi.org/10.1016/j.etap.2019.103200.

[20]

H. Xiao, X. Qin, J. Wan, et al., Pharmacological targets and the biological mechanisms of formononetin for Alzheimer's disease: a network analysis, Med.Sci. Monit. 25 (2019) 4273-4277. https://doi.org/10.12659/MSM.916662.

[21]

R. Li, C. Guo, Y. Li, et al., Therapeutic targets and signaling mechanisms of vitamin C activity against sepsis: a bioinformatics study, Brief. Bioinform.11 (2020) bbaa079. https://doi.org/10.1093/bib/bbaa079.

[22]

R. Li, K. Wu, Y. Li, et al., Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19, Aging (Albany NY) 12 (2020) 15784-15796. https://doi.org/10.18632/aging.103888.

[23]

R. Li, K. Wu, Y. Li, et al., Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: findings of bioinformatics analyses, Brief Bioinform. 22 (2021) 1161-1174.https://doi.org/10.1093/bib/bbaa141.

[24]

R. Li, Y. Li, X. Liang, et al., Network pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets, Brief Bioinform. 22(2021): 1279-1290.https://doi.org/10.1093/bib/bbaa300.

[25]

J. Ru, P. Li, J. Wang, et al., TCMSP: a database of systems pharmacology for drug discovery from herbal medicines, J. Cheminform. 6 (2014) 13.https://doi.org/10.1186/1758-2946-6-13.

[26]

D.S. Wishart, Y.D. Feunang, A.C. Guo, et al., DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic. Acids Res. 46 (2018) 1074-1082. https://doi.org/10.1093/nar/gkx1037.

[27]

J. Nickel, B.O. Gohlke, J. Erehman, et al., SuperPred: update on drug classification and target prediction, Nucleic. Acids Res. 42 (2014) 26-31.https://doi.org/10.1093/nar/gku477.

[28]

J. Gong, C. Cai, X. Liu, et al., ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method, Bioinformatics 29 (2013) 1827-1879.https://doi.org/10.1093/bioinformatics/btt270.

[29]

Z. Liu, F. Guo, Y. Wang, et al., BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine, Sci. Rep. 6(2016) 21146. https://doi.org/10.1038/srep21146.

[30]

D. Gfeller, A. Grosdidier, M. Wirth, et al., SwissTargetPrediction: a web server for target prediction of bioactive small molecules, Nucleic. Acids Res.42 (2014) 32-38. https://doi.org/10.1093/nar/gku293.

[31]

The UniProt Consortium, UniProt: the universal protein knowledgebase, Nucleic. Acids Res. 46 (2018) 2699. https://doi.org/10.1093/nar/gky092.

[32]

G. Stelzer, N. Rosen, I. Plaschkes, et al., The GeneCards Suite: from gene data mining to disease genome sequence analyses, Curr. Protoc.Bioinformatics. 54 (2016). https://doi.org/10.1002/cpbi.5.

[33]

J.S. Amberger, C.A. Bocchini, F. Schiettecatte, et al., OMIM.org: online mendelian inheritance in man (OMIM), an online catalog of human genes and genetic disorders, Nucleic. Acids Res. 43 (2015) 789-798. https://doi.org/10.1093/nar/gku1205.

[34]

M. Pathan, S. Keerthikumar, C.S. Ang, et al., FunRich: an open access standalone functional enrichment and interaction network analysis tool, Proteomics. 15 (2015) 2597-601. https://doi.org/10.1002/pmic.201400515.

[35]

R. Li, X. Ma, Y. Song, et al., Anti-colorectal cancer targets of resveratrol and biological molecular mechanism: analyses of network pharmacology, human and experimental data, J. Cell Biochem. 120 (2019) 11265-11273. https://doi.org/10.1002/jcb.28404.

[36]

D. Szklarczyk, A.L. Gable, D. Lyon, et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic. Acids Res. 47(2019) 607-613. https://doi.org/10.1093/nar/gky1131.

[37]

K. Wu, P. Wei, M. Liu, et al., To reveal pharmacological targets and molecular mechanisms of curcumol against interstitial cystitis, J. Adv. Res.20 (2019) 43-50. https://doi.org/10.1016/j.jare.2019.05.003.

[38]

R. Li, Y. Song, Z. Ji, et al., Pharmacological biotargets and the molecular mechanisms of oxyresveratrol treating colorectalcancer: network and experimental analyses, Biofactors 46 (2020) 158-167.https://doi.org/10.1002/biof.1583.

[39]

Y. Nong, Y. Liang, X. Liang, et al., Pharmacological targets and mechanisms of calycosin against meningitis, Aging (Albany NY) 12 (2020) 19468-19492.https://doi.org/10.18632/aging.103886.

[40]

X. Qin, C. Huang, K. Wu, et al., Anti-coronavirus disease 2019 (COVID-19)targets and mechanisms of puerarin, J. Cell. Mol. Med. 25 (2021) 677-685.https://doi.org/10.1111/jcmm.16117.

[41]

J. Li, C. Guo, X. Lu, et al., Anti-colorectal cancer biotargets and biological mechanisms of puerarin: Study of molecular networks, Eur. J. Pharmacol.858 (2019) 172483. https://doi.org/10.1016/j.ejphar.2019.172483.

[42]

Q. Pan, R. Zhou, M. Su, et al., The effects of plumbagin on pancreatic cancer: a mechanistic network pharmacology approach, Med. Sci. Monit. 25(2019) 4648-4654. https://doi.org/10.12659/MSM.917240.

[43]

M. Su, C. Guo, M. Liu, et al., Therapeutic targets of vitamin C on liver injury and associated biological mechanisms: a study of network pharmacology, Int. Immunopharmacol. 66 (2019) 383-387. https://doi.org/10.1016/j.intimp.2018.11.048.

[44]

B. Ge, C. Guo, Y. Liang, et al., Network analysis, and human and animal studies disclose the anticystitis glandularis effects of vitamin C, Biofactors 45 (2019) 912-919. https://doi.org/10.1002/biof.1558.

[45]

C. Tinner, C. Sommer, Fractures of the lateral process of the talus, Foot.Ankle. Clin. 23 (2018) 375-395. https://doi.org/10.1016/j.fcl.2018.04.009.

[46]

J. Jin, Screening for osteoporosis to prevent fractures, JAMA 319 (2018)2566. https://doi.org/10.1001/jama.2018.8361.

[47]

N. Wei, Y. Zhou, W. Chang, et al., Displaced intra-articular calcaneal fractures: classification and treatment, Orthopedics. 40 (2017) 921-929.https://doi.org/10.3928/01477447-20170907-02.

[48]

B. Du, J. Zhou, B. Lu, et al., Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China, Sci. Total. Environ. 720 (2020) 137585. https://doi.org/10.1016/j.scitotenv.2020.137585.

[49]

A. Engström, K. Michaëlsson, M. Vahter, et al., Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women, Bone 50 (2012) 1372-1378.https://doi.org/10.1016/j.bone.2012.03.018.

[50]

R. Khan, S. Ali, S. Mumtaz, et al., Toxicological effects of toxic metals(cadmium and mercury) on blood and the thyroid gland and pharmacological intervention by vitamin C in rabbits, Environ. Sci. Pollut. Res. Int. 26 (2019)16727-16741. https://doi.org/10.1007/s11356-019-04886-9.

[51]

M. Gass, B. Dawson-Hughes, Preventing osteoporosis-related fractures: an overview, Am. J. Med. 119 (2006) 3-11. https://doi.org/10.1016/j.amjmed.2005.12.017.

[52]

F. Monacelli, E. Acquarone, C. Giannotti, et al., Vitamin C, aging and Alzheimer's disease, Nutrients 9 (2017) 670. https://doi.org/10.3390/nu9070670.

[53]

Y.N. Qu, L. Zhang, T. Wang, et al., Vitamin C treatment rescues prelamin a-induced premature senescence of subchondral bone mesenchymal stem cells, Stem. Cells Int. 2020 (2020) 3150716. https://doi.org/10.1155/2020/3150716.

[54]

H. Yang, S. Wu, R. Feng, et al., Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats, Stem. Cell Res. Ther. 8 (2017) 267. https://doi.org/10.1186/s13287-017-0718-8.

[55]

P. Zhao, L. Xiao, J. Peng, et al., Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway, Eur. Rev. Med. Pharmacol. Sci. 22 (2018)3962-3970. https://doi.org/10.26355/eurrev_201806_15280.

[56]

X. Yang, Y. Yang, S. Zhou, et al., Puerarin stimulates osteogenic differentiation and bone formation through the ERK1/2 and p38-MAPK signaling pathways, Curr. Mol. Med. 17 (2018) 488-496. https://doi.org/10.2174/1566524018666171219101142.

[57]

M. Asagiri, H. Takayanagi, The molecular understanding of osteoclast differentiation, Bone 40 (2007) 251-264. https://doi.org/10.1016/j.bone.2006.09.023.

[58]

Y.P. Zhao, Q.Y. Tian, S. Frenkel, et al., The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling, Biomaterials 34 (2013) 6412-6421.https://doi.org/10.1016/j.biomaterials.2013.05.030

[59]

R. Zhao, Immune regulation of bone loss by Th17 cells in oestrogendeficient osteoporosis, Eur. J. Clin. Invest, 43 (2013) 1195-1202. https://doi.org/10.1111/eci.12158.

[60]

X. Qu, X. Liu, K. Cheng, et al., Mesenchymal stem cells inhibit Th17 cell differentiation by IL-10 secretion, Exp. Hematol. 40 (2012) 761-770. https://doi.org/10.1016/j.exphem.2012.05.006.

Food Science and Human Wellness
Pages 1384-1391
Cite this article:
Li R, Yu S, Liang X, et al. Vitamin C exerts anti-cadmium induced fracture functions/targets: bioinformatic and biostructural findings. Food Science and Human Wellness, 2022, 11(5): 1384-1391. https://doi.org/10.1016/j.fshw.2022.04.026

704

Views

49

Downloads

5

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 23 December 2020
Revised: 09 January 2021
Accepted: 18 January 2021
Published: 02 June 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return