AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Yogurt-derived Lactobacillus plantarum Q16 alleviated high-fat diet-induced non-alcoholic fatty liver disease in mice

Chao Tanga,1Weiwei Zhoua,1Mengyuan ShanaZhaoxin Lua( )Yingjian Lub( )
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China

1 The co-fi rst author

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Accumulating evidence revealed that some probiotics regulated lipid metabolism and alleviated diet-induced non-alcoholic fatty liver disease (NAFLD). This study mainly explored whether yogurt-derived Lactobacillus plantarum Q16 modulated lipid and energy metabolism, and suppressed microbial dysbiosis in high-fat diet (HFD)-fed mice. Results showed that oral administration of L. plantarum Q16 improved serum and hepatic lipid profile. Protein analysis showed that L. plantarum Q16 could reduce hepatic lipid content by reducing the expression of FAS, ACC, SCD-1, Srebp-1c and ATGL, but increasing expression levels of CPT-1α, PPAR-α and ATGL. Meanwhile, L. plantarum Q16 also improved hepatic energy metabolism by regulating FGF21/adiponectin/AMPKα/PGC-1α signaling pathway. Metagenomic analysis also discovered that L. plantarum Q16 increased species diversity and richness of intestinal microbiota, promoted proliferation of beneficial commensals and suppressed the growth of endotoxin-producing microorganisms in the colon of HFD-fed mice. Overall, L. plantarum Q16 protected against HFD-induced NAFLD by improving hepatic profile and regulating colonic microbiota composition.

References

[1]

S. Liu, J. Yu, M. Fu, et al., Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats, Food Res. Int. 143 (2021) 110239.https://doi.org/10.1016/j.foodres.2021.110239.

[2]

S. Parekh, F.A. Anania, Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease, Gastroenterolog 132 (2007)2191-2207. https://doi.org/10.1053/j.gastro.2007.03.055.

[3]

D. Wang, L. Lao, X. Pang, et al., Asiatic acid from Potentilla chinensis alleviates non-alcoholic fatty liver by regulating endoplasmic reticulum stress and lipid metabolism, Int. Immunopharmacol. 65 (2018) 256-267.https://doi.org/10.1016/j.intimp.2018.10.013.

[4]

L. Sun, L. Bao, D. Phurbu, et al., Amelioration of metabolic disorders by a mushroom-derived polyphenols correlates with the reduction of Ruminococcaceae in gut of DIO mice, Food Sci. Hum. Well. 10 (2021) 442-451. https://doi.org/10.1016/j.fshw.2021.04.006.

[5]

S. Yan, K. Wang, X. Wang, et al., Effect of fermented bee pollen on metabolic syndrome in high-fat diet-induced mice, Food Sci. Hum. Well. 10(2021) 345-355. https://doi.org/10.1016/j.fshw.2021.02.026.

[6]

H. Zhu, Z. Wang, Y. Wu, et al., Untargeted metabonomics reveals intervention effects of chicory polysaccharide in a rat model of nonalcoholic fatty liver disease, Int. J. Biol. Macromol. 128 (2019) 363-375.https://doi.org/10.1016/j.ijbiomac.2019.01.141.

[7]

W.C. Huang, Y.L. Chen, H.C. Liu, et al., Ginkgolide C reduced oleic acidinduced lipid accumulation in HepG2 cells, Saudi Pharm. J. 26 (2018) 1178-1184. https://doi.org/10.1016/j.jsps.2018.07.006.

[8]

D.A. Guss, S.R. Mohanty, Gut microbia dysbiosis in non-alcoholic fatty liver disease, Transl. Cancer Res. 5 (2016) S152-S155. https://doi.org/10.21037/tcr.2016.07.07.

[9]

Y. Cui, Q. Wang, R. Chang, et al., Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota, J. Agric.Food Chem. 67 (2019) 2754-2762. https://doi.org/10.1021/acs.jafc.9b00080.

[10]

H.M. Jang, S.K. Han, J.K. Kim, et al., Lactobacillus sakei alleviates highfat-diet-induced obesity and anxiety in mice by inducing AMPK activation and SIRT1 expression and inhibiting gut microbiota-mediated NF-κB activation, Mol. Nutr. Food Res. 63 (2019) 1800978. https://doi.org/10.1002/mnfr.201800978.

[11]

G. Zhu, F. Ma, G. Wang, et al., Bifidobacteria attenuate the development of metabolic disorders, with inter- and intra-species differences, Food Funct. 9(2018) 3509-3522. https://doi.org/10.1039/C8FO00100F.

[12]

Y. Li, T. Liu, X. Zhang, et al., Lactobacillus plantarum helps to suppress body weight gain, improve serum lipid profile and ameliorate low-grade inflammation in mice administered with glycerol monolaurate, J. Funct.Foods 53 (2019) 54-61. https://doi.org/10.1016/j.jff.2018.12.015

[13]

M. Naruszewicz, M.L. Johansson, D. Zapolska-Downar, et al., Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers, Am. J. Clin. Nutr. 76 (2002) 1249-1255. https://doi.org/10.1093/ajcn/76.6.1249.

[14]

A. Kujawa-Szewieczek, M. Adamczak, K. Kwiecień, et al., The Effect of Lactobacillus plantarum 299v on the incidence of Clostridium difficile infection in high risk patients treated with antibiotics, Nutrients 7 (2015)5526. https://doi.org/10.3390/nu7125526.

[15]

C. Stevenson, R. Blaauw, E. Fredericks, et al., Randomized clinical trial: effect of Lactobacillus plantarum 299v on symptoms of irritable bowel syndrome, Clin. Nutr. 30 (2014) 1151-1157. https://doi.org/10.1016/S0261-5614(14)50179-3.

[16]

M. Sun, T. Wu, G. Zhang, et al., Lactobacillus rhamnosus LRa05 improves lipid accumulation in mice fed with a high fat diet via regulating the intestinal microbiota, reducing glucose content and promoting liver carbohydrate metabolism, Food Funct. 11 (2020) 9514-9525.https://doi.org/10.1039/D0FO01720E.

[17]

C. Tang, J. Sun, B. Zhou, et al., Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide-treated mice, Food Funct. 9 (2018) 937-950.https://doi.org/10.1039/C7FO01302G.

[18]

Y. Gao, Y. Liu, F. Ma, et al., Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/c mice with subcutaneous D-galactose injection, Food Funct. 12 (2021)373-386. https://doi.org/10.1039/D0FO02794D.

[19]

P. Wang, X. Gao, Y. Li, et al., Bacillus natto regulates gut microbiota and adipose tissue accumulation in a high-fat diet mouse model of obesity, J.Funct. Foods 68 (2020) 103923. https://doi.org/10.1016/j.jff.2020.103923.

[20]

S. Gao, G. Hu, D. Li, et al., Anti-hyperlipidemia effect of sea buckthorn fruit oil extract through the AMPK and Akt signaling pathway in hamsters, J.Funct. Foods 66 (2020) 103837. https://doi.org/10.1016/j.jff.2020.103837.

[21]

Q. Wu, Q. Wang, J. Fu, et al., Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: a review of the mechanisms, Food Funct. 10 (2019) 2330-2339. https://doi.org/10.1039/c8fo02375a.

[22]

L. Shi, B.P. Tu, Acetyl-CoA and the regulation of metabolism: mechanisms and consequences, Curr. Opin. Cell Biol. 33 (2015) 125-131.https://doi.org/10.1016/j.ceb.2015.02.003.

[23]

D.K. Dahiya, M. Puniya, U.K. Shandilya, et al., Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review, Front. Microbiol. 8 (2017) 563. https://doi.org/10.3389/fmicb.2017.00563.

[24]

Y. Zhou, X. Yu, H. Chen, et al., Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages, Cell Metab. 22 (2015) 1045-1058.https://doi.org/10.1016/j.cmet.2015.09.013.

[25]

Y.C. Cheng, J.R. Liu, Effect of Lactobacillus rhamnosus GG on energy metabolism, leptin resistance, and gut microbiota in mice with diet-induced obesity, Nutrients 12 (2020) 2557. https://doi.org/10.3390/nu12092557.

[26]

C. Tang, J. Tao, J. Sun, et al., Regulatory mechanisms of energy metabolism and inflammation in oleic acid-treated HepG2 cells from Lactobacillus acidophilus NX2-6 extract, J. Food Biochem. (2021a) e13925.https://doi.org/10.1111/jfbc.13925.

[27]

J. Bai, Z. He, Y. Li, et al., Mono-2-ethylhexyl phthalate induces the expression of genes involved in fatty acid synthesis in HepG2 cells, Environ. Toxicol. Phar. 69 (2019) 104-111. https://doi.org/10.1016/j.etap.2019.04.004.

[28]

X. Sun, X. Duan, C. Wang, et al., Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice, Eur. J. Pharmacol. 806(2017) 75-82. https://doi.org/10.1016/j.ejphar.2017.04.021.

[29]

J.Y. Kim, R.C. Hickner, R.L. Cortright, et al., Lipid oxidation is reduced in obese human skeletal muscle, Am. J. Physiol. Endoc. M. 279 (2000) E1039.https://doi.org/10.1152/ajpendo.2000.279.5.E1039.

[30]

M. Stefanovic-Racic, G. Perdomo, B.S. Mantell, et al., A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels, Am. J. Physiol. Endocrinol. M. 294 (2008)E969-E977. https://doi.org/10.1152/ajpendo.00497.2007.

[31]

R. Zimmermann, R. Zechner, Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase, Science 306 (2004) 1383.https://doi.org/10.1126/science.1100747.

[32]

G. Haemmerle, A. Lass, R. Zimmermann, et al., Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase, Science 312 (2006) 734-737. https://doi.org/10.1126/science.1123965.

[33]

K.T. Ong, M.T. Mashek, S.Y. Bu, et al., Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning, Hepatology 53 (2011) 116-126.https://doi.org/10.1002/hep.24006.

[34]

S. Park, Y. Ji, H.Y. Jung, et al., Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model, Appl. Microbiol. Biotechnol. 101 (2017) 1605-1614.https://doi.org/10.1007/s00253-016-7953-2.

[35]

D.H. Kim, D. Jeong, I.B. Kang, et al., Dual function of Lactobacillus ke firi DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue, Mol. Nutr. Food Res. 61 (2017) 1700252. https://doi.org/10.1002/mnfr.201700252.

[36]

K. Begriche, J. Massart, M.A. Robin, et al., Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver, J. Hepatol. 54 (2011) 773-794.https://doi.org/10.1016/j.jhep.2010.11.006.

[37]

M. Dimauro, E.A. Schon, Mitochondrial respiratory-chain diseases, New Engl. J. Med. 348 (2003) 2656-2668. https://doi.org/10.1056/nejmra022567.

[38]

L.H.M. Bozi, J.C. Campos, V.O. Zambelli, et al., Mitochondriallytargeted treatment strategies, Mol. Aspects Medi. 71 (2020) 100836.https://doi.org/10.1016/j.mam.2019.100836.

[39]

D.P. Kelly, R.C. Scarpulla, Transcriptional regulatory circuits controlling mitochondrial biogenesis and function, Gene Dev. 18 (2004) 357-368.https://doi.org/10.1101/gad.1177604.

[40]

C. Tang, L. Kong, M. Shan, et al., Protective and ameliorating effects of probiotics against diet-induced obesity: a review, Food Res. Int. 147 (2021)110490. https://doi.org/10.1016/j.foodres.2021.110490.

[41]

Z. Lin, H. Tian, K.S. Lam, et al., Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice, Cell Metab. 17 (2013) 779-789. https://doi.org/10.1016/j.cmet.2013.04.005.

[42]

P.A. Andreux, R.H. Houtkooper, J. Auwerx, Pharmacological approaches to restore mitochondrial function, Nat. Rev. Drug Discov. 12 (2013) 465-483.https://doi.org/10.1038/nrd4023.

[43]

L.H. Chen, Y.H. Chen, K.C. Cheng, et al., Antiobesity effect of Lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in high-energy-diet-fed rats, J. Nutr. Biochem. 54 (2018)87-94. https://doi.org/10.1016/j.jnutbio.2017.11.004.

[44]

A. Dihingia, D. Ozah, S. Ghosh, et al., Vitamin K1 inversely correlates with glycemia and insulin resistance in patients with type 2 diabetes (T2D) and positively regulates SIRT1/AMPK pathway of glucose metabolism in liver of T2D mice and hepatocytes cultured in high glucose, J. Nutr. Biochem. 52(2018) 103-114. https://doi.org/10.1016/j.jnutbio.2017.09.022.

[45]

F. Yeung, J.E. Hoberg, C.S. Ramsey, et al., Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase, EMBO J.23 (2004) 2369-2380. https://doi.org/10.1038/sj.emboj.7600244.

[46]

Y. Zhou, L. Rui, Leptin signaling and leptin resistance, Front. Med. 7 (2013)207-222. https://doi.org/10.1007/s11684-013-0263-5.

[47]

T. Kadowaki, T. Yamauchi, N. Kubota, et al., Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome, J. Clin.Invest. 116 (2006) 1784-1792. https://doi.org/10.1172/JCI29126.

[48]

Y. Liu, Y. Gao, F. Ma, et al., The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed with a high fat diet, Food Funct. 11 (2020) 5024-5039.https://doi.org/10.1039/d0fo00439a.

[49]

H. Chen, S. Zhou, J. Li, et al., Xyloglucan compounded inulin or arabinoxylan against glycometabolism disorder via different metabolic pathways: gut microbiota and bile acid receptor effects, J. Funct. Foods, 74(2020) 104162. https://doi.org/10.1016/j.jff.2020.104162.

[50]

N.R. Shin, T.W. Whon, J.W. Bae, Proteobacteria: microbial signature of dysbiosis in gut microbiota, Trends Biotechnol. 33 (2015) 496-503.https://doi.org/10.1016/j.tibtech.2015.06.011.

[51]

S. Guo, H. Zhao, Z. Ma, et al., Anti-obesity and gut microbiota modulation effect of secoiridoid-enriched extract from Fraxinus mandshurica seeds on high-fat diet-fed mice, Molecules 25 (2020) 4001. https://doi.org/10.3390/molecules25174001.

[52]

B. Wang, Q. Kong, X. Li, et al., A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference, Nutrients 12(2020) 3197. https://doi.org/10.3390/nu12103197.

[53]

C. Petersen, R. Bell, K.A. Klag, et al., T cell–mediated regulation of the microbiota protects against obesity, Science 365 (2019) eaat9351.https://doi.org/10.1126/science.aat9351.

[54]

Y.B. Kang, Y.U. Li, Y.H. Du, et al., Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota, Int. J. Obesity 43 (2019)1631-1643. https://doi.org/10.1038/s41366-018-0187-x.

[55]

M. Vazquez-Moreno, A. Perez-Herrera, D. Locia-Morales, et al., Association of gut microbiome with fasting triglycerides, fasting insulin and obesity status in Mexican children, Pediatr. Obes. 16 (2021) e12748.https://doi.org/10.1111/ijpo.12748.

[56]

D. Hou, Q. Zhao, L. Yousaf, et al., Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet, J. Funct.Foods 64 (2020) 103687. https://doi.org/10.1016/j.jff.2019.103687.

[57]

J. Zhang, C. Yi, J. Han, et al., Novel high-docosahexaenoic-acid tuna oil supplementation modulates gut microbiota and alleviates obesity in highfat diet mice, Food Sci. Nutr. 8 (2020) 6513-6527. https://doi.org/10.1002/fsn3.1941.

[58]

G.H. van Muijlwijk, G. van Mierlo, P.W.T.C. Jansen, et al., Identification of Allobaculum mucolyticum as a novel human intestinal mucin degrader. Gut Microbes 13 (2021) 1966278. https://doi.org/10.1080/19490976.2021.1966278.

[59]

J. Kim, J.H. Choi, T. Oh, et al., Codium fragile ameliorates high-fat dietinduced metabolism by modulating the gut microbiota in mice, Nutrients 12(2020) 1848. https://doi.org/10.3390/nu12061848.

[60]

M.C. Pitcher, J.H. Cummings, Hydrogen sulphide: a bacterial toxin in ulcerative colitis, Gut 39 (1996) 1-4. https://doi.org/10.1136/gut.39.1.1.

[61]

L.H. Han, T.G. Li, M. Du, et al., Beneficial effects of Potentilla discolor bunge water extract on inflammatory cytokines release and gut microbiota in high-fat diet and streptozotocin-induced type 2 diabetic mice, Nutrients 11(2019) 670. https://doi.org/10.3390/nu11030670.

Food Science and Human Wellness
Pages 1428-1439
Cite this article:
Tang C, Zhou W, Shan M, et al. Yogurt-derived Lactobacillus plantarum Q16 alleviated high-fat diet-induced non-alcoholic fatty liver disease in mice. Food Science and Human Wellness, 2022, 11(5): 1428-1439. https://doi.org/10.1016/j.fshw.2022.04.034

599

Views

73

Downloads

17

Crossref

17

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 22 September 2021
Revised: 12 October 2021
Accepted: 28 November 2021
Published: 02 June 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return