AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Adropin as an indicator of T2DM and its complications

Hu ZhangaNing Chenb( )
Graduate School, Wuhan Sports University, Wuhan 430079, China
Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Type 2 diabetes mellitus (T2DM) is one of metabolic diseases with the major inducer of obesity. Due to the change in lifestyle and dietary structure, more and more people are being suffered from T2DM. Therefore, the prevention and treatment of T2DM and its complications has become an urgent problem to be solved. As a secreted peptide, adropin is identified as a useful regulator associated with insulin sensitivity and energy homeostasis. It has the potential for regulating metabolic diseases including obesity and T2DM. It should be noted that the secretion of adropin can be induced by diets, aerobic exercise and other interventions. In this article, the underlying mechanisms of adropin for regulating obesity, T2DM and its complications including diabetic nephropathy, diabetic retinopathy, diabetic encephalopathy, diabetic vascular disease and diabetic cardiovascular disease were summarized. Meanwhile, the strategies for promoting the secretion of adropin were also discussed, which will provide a target for the prevention and targeted treatment, or a candidate of novel and effective functional food or drug for metabolic diseases in the future.

References

[1]

X.R. Pan, W.Y. Yang, G.W. Li, et al., Prevalence of diabetes and its risk factors in China, 1994, Diabetes Care 20(11) (1997) 1664-1669. http://dx.doi.org/10.2337/diacare.20.11.1664.

[2]

A. Kumar, L.A. De, Latent autoimmune diabetes in adults (LADA) in Asian and European populations, Diabetes Metab. Res. Rev. 33(5) (2017) e2890. http://dx.doi.org/10.1002/dmrr.2890.

[3]

X. Liu, C. Yu, Y. Wang, et al., Trends in the incidence and mortality of diabetes in China from 1990 to 2017: a joinpoint and age-period-cohort analysis, Int. J. Environ. Res. Public Health 16(1) (2019) 158. http://dx.doi.org/10.3390/ijerph16010158.

[4]

L.M. Stein, G.L. Yosten, W.K. Samson, Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19, Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(6) (2016) 476-480. http://dx.doi.org/10.1152/ajpregu.00511.2015.

[5]

S. Yosaee, M. Khodadost, A. Esteghamati, et al., Metabolic syndrome patients have lower levels of adropin when compared with healthy overweight/obese and lean subjects, Am. J. Mens. Health. 11(2) (2017) 426-434. http://dx.doi.org/10.1177/1557988316664074.

[6]

J.R. Stevens, M.L. Kearney, M.P. St-Onge, et al., Inverse association between carbohydrate consumption and plasma adropin concentrations in humans, Obesity (Silver Spring) 24(8) (2016) 1731-1740. http://dx.doi.org/10.1002/oby.21557.

[7]

S. Fujie, N. Hasegawa, K. Sato, et al., Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults, Am. J. Physiol. Heart. Circ. Physiol. 309(10) (2015) H1642. http://dx.doi.org/10.1139/apnm-2016-0310.

[8]

F. Gao, J. Fang, F. Chen, et al., Enho mutations causing low adropin: a possible pathomechanism of MPO-ANCA associated lung injury, EBioMedicine 9 (2016) 324-335. http://dx.doi.org/10.1016/j.ebiom.2016.05.036.

[9]

K.G. Kumar, J.L. Trevaskis, D.D. Lam, et al., Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism, Cell Metab. 8(6) (2008) 468-481.http://dx.doi.org/.org/10.1016/j.cmet.2008.10.011.

[10]

U.J. Jung, M.S. Choi, Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease, Int. J. Mol. Sci. 15(4) (2014) 6184-6223. http://dx.doi.org/10.3390/ijms15046184.

[11]

L.B. Liu, X.D. Chen, X.Y. Zhou, et al., The Wnt antagonist and secreted frizzled-related protein 5: implications on lipid metabolism, inflammation, and type 2 diabetes mellitus, Biosci. Rep. 38(4) (2018) BSR20180011. http://dx.doi.org/10.1042/BSR20180011.

[12]

A.B. Molofsky, J.C. Nussbaum, H.E. Liang, et al., Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages, J. Exp. Med. 210(3) (2013) 535-549. http://dx.doi.org/10.1084/jem.20121964.

[13]

M.V. Machado, Y. Yang, A.M. Diehl, The benefits of restraint: a pivotal role for IL-13 in hepatic glucose homeostasis, J. Clin. Invest. 123(1) (2013) 115-117. http://dx.doi.org/10.1172/JCI67238.

[14]

M. Jasaszwili, T. Wojciechowicz, M. Billert, et al., Effects of adropin on proliferation and differentiation of 3T3-L1 cells and rat primary preadipocytes, Mol. Cell Endocrinol. 496 (2019) 110532. http://dx.doi.org/10.1016/j.mce.2019.110532.

[15]

S. Gao, S. Ghoshal, L. Zhang, et al., The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity, J. Biol. Chem. 294(36) (2019) 13366-13377. http://dx.doi.org/10.1074/jbc.RA119.008967.

[16]

S. Gao, R.P. Mcmillan, J. Jacas, et al., Regulation of substrate oxidation preferences in muscle by the peptide hormone adropin, Diabetes 63(10) (2014) 3242-3252. http://dx.doi.org/10.2337/db14-0388.

[17]

T. Thoudam, C.M. Ha, J. Leem, et al., PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity, Diabetes 68(3) (2019) 571-586. http://dx.doi.org/10.2337/db18-0363.

[18]

C.M. Wong, Y. Wang, J.T. Lee, et al., Adropin is a brain membrane-bound protein regulating physical activity via the NB- 3/Notch signaling pathway in mice, J. Biol. Chem. 289(37) (2014) 25976-25986. http://dx.doi.org/10.1074/jbc.M114.576058.

[19]

K. Ganesh-Kumar, Jingying. Zhang, Su Gao, et al., Adropin deficiency is associated with increased adiposity and insulin resistance, Obesity (Silver Spring) 20(7) (2012) 1394-1402. http://dx.doi.org/10.1038/oby.2012.31.

[20]

A.A. Butler, J. Zhang, C.A. Price, et al., Low plasma adropin concentrations increase risks of weight gain and metabolic dysregulation in response to a high-sugar diet in male nonhuman primates, J. Biol. Chem. 294(25) (2019) 9706-9719. http://dx.doi.org/10.1074/jbc.RA119.007528.

[21]

H.N. Choi, J.E. Yim, Plasma adropin as a potential marker predicting obesity and obesity-associated cancer in Korean patients with type 2 diabetes mellitus, J. Cancer Prev. 23(4) (2018) 191-196. http://dx.doi.org/10.15430/JCP.2018.23.4.191.

[22]

O.R. Temneanu, L.M. Trandafir, M.R. Purcarea, Type 2 diabetes mellitus in children and adolescents: a relatively new clinical problem within pediatric practice, J. Med. Life 9(3) (2016) 235-239. http://dx.doi.org/10.1186/s12913-016-1423-5.

[23]

T. Karaderi, A.W. Drong, C.M. Lindgren, Insights into the genetic susceptibility to type 2 diabetes from genome-wide association studies of obesity-related traits, Curr. Diab. Rep. 15(10) (2015) 83. http://dx.doi.org/10.1007/s11892-015-0648-8.

[24]

I. Indias-Moreno, F. Cardona, F.J. Tinahones, et al., Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front. Microbiol. 5 (2014) 190. http://dx.doi.org/10.3389/fmicb.2014.00190.

[25]

H. Zang, F. Jiang, X. Cheng, et al., Serum adropin levels are decreased in Chinese type 2 diabetic patients and negatively correlated with body mass index, Endocr. J. 65(7) (2018) 685-691. http://dx.doi.org/10.1507/endocrj.EJ18-0060.

[26]

O. Kutlu, O. Altun, O. Dikker, et al., Serum adropin levels are reduced in adult patients with nonalcoholic fatty liver disease, Med. Princ. Pract. 28(5) (2019) 463-469. http://dx.doi.org/10.1159/000500106.

[27]

O. Sayin, Y. Tokgoz, N. Arslan, Investigation of adropin and leptin levels in pediatric obesity-related nonalcoholic fatty liver disease, J. Pediatr. Endocrinol. Metab. 27(5/6) (2014) 479-484. http://dx.doi.org/10.1515/jpem-2013-0296.

[28]

X. Chen, H. Xue, W. Fang, et al., Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity, Redox. Biol. 21 (2019) 101068. http://dx.doi.org/10.1016/j.redox.2018.101068.

[29]

L. Hodson, P.J. Gunn, The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state, Nat. Rev. Endocrinol. 15(12) (2019) 689-700. http://dx.doi.org/10.1038/s41574-019-0256-9.

[30]

R. Akcilar, F. Emel Kocak, H. Simsek, et al., The effect of adropin on lipid and glucose metabolism in rats with hyperlipidemia, Iran. J. Basic. Med. Sci. 19(3) (2016) 245-251.

[31]

X. Chen, S. Chen, T. Shen, et al., Adropin regulates hepatic glucose production via PP2A/AMPK pathway in insulin-resistant hepatocytes, FASEB J. 10 (2020) 1096. http://dx.doi.org/10.1096/fj.202000115RR.

[32]

S. Aydin, T. Kuloglu, S. Aydin, Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus, Peptides 47 (2013) 66-70. http://dx.doi.org/10.1016/j.peptides.2013.07.001.

[33]

J. Muter, M.T. Alam, P. Vrljicak, et al., The glycosyltransferase EOGT regulates adropin expression in decidualizing human endometrium, Endocrinology 159(2) (2018) 994-1004. http://dx.doi.org/10.1210/en.2017-03064.

[34]

A.A. Butler, C.S. Tam, K.L. Stanhope, et al., Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans, J. Clin. Endocrinol. Metab. 97(10) (2012) 3783-3791. http://dx.doi.org/10.1210/jc.2012-2194.

[35]

C. Yang, K.M. DeMars, E. Jalil-Candelario, Age-dependent decrease in adropin is associated with reduced levels of endothelial nitric oxide synthase and increased oxidative stress in the rat brain, Aging Dis. 9(2) (2018) 322-330. http://dx.doi.org/10.14336/AD.2017.0523.

[36]

J.O. Lundberg, M. Carlstrom, E. Weitzberg, Metabolic effects of dietary nitrate in health and disease, Cell Metab. 28(1) (2018) 9-22. http://dx.doi.org/10.1016/j.cmet.2018.06.007.

[37]

B.E. Sansbury, T.D. Cummins, Y. Tang, et al., Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype, Circ. Res. 111(9) (2012) 1176-1189. http://dx.doi.org/10.1161/CIRCRESAHA.112.266395.

[38]

S. Aydin, Three new players in energy regulation: preptin, adropin and irisin, Peptides 56 (2014) 94-110. http://dx.doi.org/10.1016/j.peptides.2014.03.021.

[39]

S. Gao, R.P. Mcmillan, Q. Zhu, et al., Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet- induced obese mice with insulin resistance, Mol. Metab. 4(4) (2015) 310-324. http://dx.doi.org/10.1016/j.molmet.2015.01.005.

[40]

O. Altintas, M. Kumas, M.O. Altintas, Neuroprotective effect of ischemic preconditioning via modulating the expression of adropin and oxidative markers against transient cerebral ischemia in diabetic rats, Peptides 79 (2016) 31-38. http://dx.doi.org/10.1016/j.peptides.2016.03.011.

[41]

B.P. Dick, R. McMahan, T. Knowles, et al., Hematopoietic cell-expressed endothelial nitric oxide protects the liver from insulin resistance, Arterioscler. Thromb. Vasc. Biol. 40(3) (2020) 670-681. http://dx.doi.org/10.1161/ATVBAHA.119.313648..

[42]

R. Akcilar, F.E. Kocak, H. Simsek, et al., Antidiabetic and hypolipidemic effects of adropinin streoptozotocin-induced type 2 diabetic rats, Bratisl. Lek. Listy 117(2) (2016) 100-105. http://dx.doi.org/10.4149/bll_2016_020.

[43]

S. Chen, K. Zeng, Q.C. Liu, et al., Adropin deficiency worsens HFD-induced metabolic defects, Cell Death. Dis. 8(8) (2017) e3008. http://dx.doi.org/10.1038/cddis.2017.362.

[44]

N. Papadopoulou-Marketou, S.A. Paschou, N. Marketos, et al., Diabetic nephropathy in type 1 diabetes, Minerva. Med. 109(3) (2018) 218-228. http://dx.doi.org/10.23736/S0026-4806.17.05496-9.

[45]

M.A. Lanaspa, T. Ishimoto, C. Cicerchi, et al., Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy, J. Am. Soc. Nephrol. 25(11) (2014) 2526-2538. http://dx.doi.org/10.1681/ASN.2013080901.

[46]

D.V. Ilatovskaya, V. Levchenko, A. Lowing, et al., Podocyte injury in diabetic nephropathy: implications of angiotensin Ⅱ - dependent activation of TRPC channels, Sci. Rep. 5 (2015) 17637. http://dx.doi.org/10.1038/srep17637.

[47]

W. Hu, L. Chen, Association of serum adropin concentrations with diabetic nephropathy, Mediators Inflamm. 2016 (2016) 6038261. http://dx.doi.org/10.1155/2016/6038261.

[48]

S. Aydin, T. Kuloglu, S. Aydin, et al., Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes, Mol. Cell. Biochem. 380(1/2) (2013) 73-81. http://dx.doi.org/10.1007/s11010-013-1660-4.

[49]

M.M. Nentwich, M.W. Ulbig, Diabetic retinopathy - ocular complications of diabetesmellitus, World J. Diabetes 6(3) (2015) 489-499. http://dx.doi.org/10.4239/wjd.v6.i3.489.

[50]

C. Altmann, M.H.H. Schmidt, The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration, Int. J. Mol. Sci. 19(1) (2018). http://dx.doi.org/10.3390/ijms19010110.

[51]

J. Xu, L.J. Chen, J. Yu, et al., Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy, Cell Physiol. Biochem. 48(2) (2018) 705-717. http://dx.doi.org/10.1159/000491897.

[52]

M. Nalini, B.V. Raghavulu, A. Annapurna, et al., Correlation of various serum biomarkers with the severity of diabetic retinopathy, Diabetes Metab. Syndr. 11(Suppl 1) (2017) S451-S454. http://dx.doi.org/10.1016/j.dsx.2017.03.034.

[53]

R.S. Eshaq, A.M.Z. Aldalati, J.S. Alexander, et al., Diabetic retinopathy: breaking the barrier, Pathophysiology 24(4) (2017) 229-241. http://dx.doi.org/10.1016/j.pathophys.2017.07.001.

[54]

M. Sasaki, Y. Ozawa, T. Kurihara, et al., Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes, Diabetologia 53(3) (2010) 971-979. http://dx.doi.org/10.1007/s00125-009-1655-6.

[55]

K. Sato, T. Yamashita, R. Shirai, et al., Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation, Int. J. Mol. Sci. 19(5) (2018) 1293. http://dx.doi.org/10.3390/ijms19051293.

[56]

S. Li, J. Sun, W. Hu, et al., The association of serum and vitreous adropin concentrations with diabetic retinopathy, Ann. Clin. Biochem. 56(2) (2019) 253-258. http://dx.doi.org/10.1177/0004563218820359.

[57]

Y. Dong, Y. Wu, H.C. Choi, et al., Diabetic endothelium dysfunction, cardiovascular complications, and therapeutics, J. Diabetes Res. 2016 (2016) 1-2. http://dx.doi.org/10.1155/2016/5349801.

[58]

B. Basha, S.M. Samuel, C.R. Triggle, et al., Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress?, J. Diabetes Res. 2012 (2014) 481840. http://dx.doi.org/10.1155/2012/481840.

[59]

M. Topuz, A. Celik, T. Aslantas, et al., Plasma adropin levels predict endothelial dysfunction like flow-mediated dilatation in patients with type 2 diabetes mellitus, J. Investig. Med. 61(8) (2013) 1161-1164. http://dx.doi.org/10.2310/JIM.0000000000000003.

[60]

C.U. Oruc, Y.E. Akpinar, E. Dervisoglu, et al., Low concentrations of adropin are associated with endothelial dysfunction as assessed by flow-mediated dilatation in patients with metabolic syndrome, Clin. Chem. Lab. Med. 55(1) (2017) 139-144. http://dx.doi.org/10.1515/cclm-2016-0329.

[61]

F. Lovren, Y. Pan, A. Quan, et al., Adropin is a novel regulator of endothelial function, Circulation 122(11 Suppl) (2010) 185-192. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.931782.

[62]

O.S. Kwon, R.H.I. Andtbacka, J.R. Hyngstrom, et al., Vasodilatory function in human skeletal muscle feed arteries with advancing age: the role of adropin, J. Physiol. 597(7) (2019) 1791-1804. http://dx.doi.org/10.1113/JP277410.

[63]

C. Yang, K.M. Demars, K.E. Hawkins, et al., Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions, Peptides 81 (2016) 29-37. http://dx.doi.org/10.1016/j.peptides.2016.03.009.

[64]

H. Zhang, L. Jiang, Y.J. Yang, et al., Aerobic exercise improves endothelial function and serum adropin levels in obese adolescents independent of body weight loss, Sci. Rep. 7(1) (2017) 17717. http://dx.doi.org/10.1038/s41598-017-18086-3.

[65]

D. Thapa, B. Xie, M. Zhang, et al., Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice, J. Mol. Cell Cardiol. 129 (2019) 174-178. http://dx.doi.org/10.1016/j.yjmcc.2019.02.012.

[66]

T.R. Altamimi, S. Gao, Q.G. Karwi, et al., Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency, Metabolism 98 (2019) 37-48. http://dx.doi.org/10.1016/j.metabol.2019.06.005.

[67]

L. Wu, J. Fang, L. Chen, et al., Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non- diabetic patients, Clin. Chem. Lab. Med. 52(2) (2014) 751-758. http://dx.doi.org/10.1515/cclm-2013-0844.

[68]

S. Aydin, M.N. Eren, M. Yilmaz, et al., Adropin as a potential marker of enzyme-positive acute coronary syndrome, Cardiovasc. J. Afr. 28(1) (2017) 40-47. http://dx.doi.org/10.5830/CVJA-2016-055.

[69]

B. Wang, Y. Xue, F. Shang, et al., Association of serum adropin with the presence of atrial fibrillation and atrial remodeling, J. Clin. Lab. Anal. 33(2) (2019) e22672.

[70]

R. Chen, J. Shi, Q. Yin, et al., Morphological and pathological characteristics of brain in diabetic encephalopathy, J Alzheimers Dis. 65(1) (2018) 15-28. http://dx.doi/org/10.3233/JAD-180314.

[71]

S. Shahjouei, S. Ansari, T. Pourmotabbed, et al., Potential roles of adropin in central nervous system: review of current literature, Front. Mol. Biosci. 27(3) 25 (2016). http://dx.doi/org/10.3389/fmolb.2016.00025.

[72]

S. Banerjee, S. Ghoshal, C. Girardet, et al., Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice, NPJ Aging Mech. Dis. 7(1) (2021) 23. http://dx.doi/org/10.1038/s41514-021-00076-5.

[73]

A. Ozkan, M.A. Aslan, O. Sinen, et al., Effects of adropin on learning and memory in rats tested in the Morris water maze, Hippocampus 32(4) (2022) 253-263. http://dx.doi/org/10.1002/hipo.23403.

[74]

S.P. Loewen, A.V. Ferguson, Adropin acts in the rat paraventricular nucleus to influence neuronal excitability, Am. J. Physiol. Regul. Integr. Comp. Physiol. 312(4) (2017) R511-R519. http://dx.doi/org/10.1152/ajpregu.00517.2016.

[75]

C.R. Mikus, D.J. Oberlin, J. Libla, et al., Glycaemic control is improved by 7 days of aerobic exercise training in patients with type 2 diabetes, Diabetologia 55(5) (2012) 1417-1423. http://dx.doi.org/10.1007/s00125-012-2490-8.

[76]

T.R. Koves, J.R. Ussher, R.C. Noland, et al., Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance, Cell Metab. 7(1) (2008) 45-56. http://dx.doi.org/10.1016/j.cmet.2007.10.013.

[77]

K.A. Simpson, Y. Mavros, S. Kay, et al., Graded resistance exercise and type 2 diabetes in older adults (The GREAT2DO study): methods and baseline cohort characteristics of a randomized controlled trial, Trials 16 (2015) 512. http://dx.doi.org/10.1186/s13063-015-1037-y.

[78]

R. Soori, A.A. Amini, S. Choobineh, et al., Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats, Arch. Physiol. Biochem. (2019) 1-6. http://dx.doi.org/10.1080/13813455.2019.1660370.

[79]

H.C. Chao, P.F. Tsai, S.C. Lee, et al., Effects of myricetin-containing ethanol solution on high-fat diet induced obese rats, J. Food Sci. 82(8) (2017) 1947-1952. http://dx.doi.org/10.1111/1750-3841.13755.

[80]

K.L. Stanhope, J.M. Schwarz, N.L. Keim, et al., Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans, J. Clin. Invest. 119(5) (2009) 1322-1334. http://dx.doi.org/10.1038/s41430-018-0297-5.

[81]

M. Zarrati, M. Raji Lahiji, E. Salehi, et al., Effects of probiotic yogurt on serum omentin-1, adropin, and nesfatin-1 concentrations in overweight and obese participants under low-calorie diet, Probiotics Anti. Micro. 11(4) (2019) 1202-1209. http://dx.doi.org/10.1007/s12602-018-9470-3.

[82]

S. Aydin, M.N. Eren, T. Kuloglu, et al., Alteration of serum and cardiac tissue adropin, copeptin, irisin and TRPM2 expressions in DOX treated male rats, Biotech. Histochem. 90(3) (2015) 197-205. http://dx.doi.org/10.3109/10520295.2014.977949.

[83]

L. Zhao, C. Zhang, L. Wang, et al., GW26-e1596 Effects of atorvastatin on mRNA and protein expression of adropin in cultured human umbilical endothelial cells and rat artery smooth muscle cells, J. Am. Coll. Cardiol. 66 (2015) C31. http://dx.doi.org/10.1016/j.jacc.2015.06.1146.

[84]

H.T. Celik, N. Akkaya, H. Erdamar, et al., The effects of valsartan and amlodipine on the levels of irisin, adropin, and perilipin, Clin. Lab. 61(12) (2015) 1889-1895. http://dx.doi.org/10.7754/clin.lab.2015.150420.

[85]

L. Kheirandish-Gozal, A. Gileles-Hillel, M.L. Alonso-Alvarez, et al., Effects of adenotonsillectomy on plasma inflammatory biomarkers in obese children with obstructive sleep apnea: a community-based study, Int. J. Obes (Lond). 39(7) (2015) 1094-1100. http://dx.doi.org/10.1038/ijo.2015.37.

[86]

N. Chen, Q. Li, J. Liu, et al., Irisin, an exercise-induced myokine as a metabolic regulator: an updated narrative review, Diabetes Metab. Res. Rev. 32(1) (2016) 51-59. http://dx.doi.org/10.1002/dmrr.2660.

[87]

M. Gluck, J. Gluck, M. Wiewiora, et al., Serum irisin, adropin, and preptin in obese patients 6 months after bariatric surgery, Obes. Surg. 29(10) (2019) 3334-3341. http://dx.doi.org/10.1007/s11695-019-03998-y.

[88]

S. Ghoshal, J.R. Stevens, C. Billon, et al., Adropin: an endocrine link between the biological clock and cholesterol homeostasis, Mol. Metab. 8 (2018) 51-64. http://dx.doi.org/10.1016/j.molmet.2017.12.002.

[89]

A. Kohsaka, A.D. Laposky, K.M. Ramsey, et al., High-fat diet disrupts behavioral and molecular circadian rhythms in mice, Cell Metab. 6(5) (2007) 414-421. http://dx.doi.org/10.1016/j.cmet.2007.09.006.

Food Science and Human Wellness
Pages 1455-1463
Cite this article:
Zhang H, Chen N. Adropin as an indicator of T2DM and its complications. Food Science and Human Wellness, 2022, 11(6): 1455-1463. https://doi.org/10.1016/j.fshw.2022.06.002

710

Views

106

Downloads

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 16 May 2020
Revised: 02 July 2020
Accepted: 15 July 2020
Published: 18 July 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return