AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Isolation and characterization of novel peptides from fermented products of Lactobacillus for ulcerative colitis prevention and treatment

Dong Hea,b,1Wen Zengb,1Yi WangbYifan XingbKang XiongbNan SubChong Zhangb,cYuan LubXinhui Xingb,c,d,e( )
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, China Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 440300, China

1 Authors contributed equally to the article.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Ulcerative colitis (UC) is an incurable and highly complex digestive disease affecting millions of people worldwide. Compared to the current therapeutic drugs, bioactive peptides are more promising and safe substances as functional foods or drugs for the prevention and treatment of UC. The alcohol-soluble components from fermentation broth by fresh wheat germ and apple (AC-WGAF) were found to be effective in UC prevention in dextran sulfate sodium-induced mice in vivo. Herein, 4 novel peptides are identified from AC-WGAF by membrane ultrafiltration, recycling preparative high-performance liquid chromatography, and matrix-assisted laser desorption–ionization time-of-flight/time-of-flight mass spectrometry, possessing anti-colitis activity via using an in vitro model. One of those peptides named T24 (PVLGPVRGPFPLL) exhibited the most remarkable anti-colitis activity by preventing tight junction protein loss, maintaining epithelial barrier integrity, and promoting cell proliferation during in vitro and in vivo studies by regulating mitogen-activated protein kinase signaling pathways. Thus, T24 is a promising peptide as a functional food or novel drug for UC prevention and treatment.

References

[1]

B. Xia, J. Crusius, S. Meuwissen, et al., Inflammatory bowel disease: definition, epidemiology, etiologic aspects, and immunogenetic studies, World J. Gastroenterol. 4 (1998) 446-458. http://doi.org/10.1080/003655298750026868.

[2]

B.M. Fung, K.D. Lindor, J.H. Tabibian, Cancer risk in primary sclerosing cholangitis: epidemiology, prevention, and surveillance strategies, World J. Gastroenterol. 25 (2019) 659-671. http://doi.org/10.3748/wjg.v25.i6.659.

[3]

W. Fries, S. Comunale, Ulcerative colitis: pathogenesis, Curr. Drug Targets 12 (2011) 1373-1382. https://doi.org/10.2174/138945011796818261.

[4]

L. Zhang, X. Wei, R. Zhang, et al., Design and development of a novel peptide for treating intestinal inflammation, Front. Immunol. 10 (2019) 1841. https://doi.org/10.3389/fimmu.2019.01841.

[5]

R.K. Cross, O. Lapshin, J. Finkelstein, Patient subjective assessment of drug side effects in inflammatory bowel disease, J. Clin. Gastroenterol. 42 (2008) 244-251. https://doi.org/10.1097/MCG.0b013e31802f19af.

[6]

F.S. de Medina, A. Daddaoua, P. Requena, et al., New insights into the immunological effects of food bioactive peptides in animal models of intestinal inflammation, Proc. Nutr. Soc. 69 (2010) 454-462. https://doi.org/10.1017/S0029665110001783.

[7]

Y. Ma, W. Yan, S. Ding, et al., Effects of bioactive peptide on inflammatory bowel disease, focus on signal transduction and intestinal microbiota, Curr. Pharm. Des. 24 (2018) 2782-2788. https://doi.org/10.2174/1381612824666180829103945.

[8]

L. Amigo, B. Hernandez-Ledesma, Current evidence on the bioavailability of food bioactive peptides, Molecules 25 (2020) 4479. https://doi.org/10.3390/molecules25194479.

[9]

O. Martinez-Augustin, B. Rivero-Gutierrez, C. Mascaraque, et al., Food derived bioactive peptides and intestinal barrier function, Int. J. Mol. Sci. 15 (2014) 22857-22873. https://doi.org/10.3390/ijms151222857.

[10]

P. Chen, D. Bakke, L. Kolodziej, et al., Antrum mucosal protein-18 peptide targets tight junctions to protect and heal barrier structure and function in models of inflammatory bowel disease, Inflamm. Bowel. Dis. 21 (2015) 2393-2402. https://doi.org/10.1097/MIB.0000000000000499.

[11]

X. Zong, W. Hu, D. Song, et al., Porcine lactoferrin-derived peptide LFP-20 protects intestinal barrier by maintaining tight junction complex and modulating inflammatory response, Biochem. Pharmacol. 104 (2016) 74-82. https://doi.org/10.1016/j.bcp.2016.01.009.

[12]

J. Kovacs-Nolan, H. Zhang, M. Ibuki, et al., The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation, Biochim. Biophys. Acta. 1820 (2012) 1753-1763. https://doi.org/10.1016/j.bbagen.2012.07.007.

[13]

H. Yasumatsu, S. Tanabe, The casein peptide Asn-Pro-Trp-Asp-Gln enforces the intestinal tight junction partly by increasing occludin expression in Caco-2 cells, Br. J. Nutr. 104 (2010) 951-956. https://doi.org/10.1017/S0007114510001698.

[14]

W. Zhu, L. Ren, L. Zhang, et al., The potential of food protein-derived bioactive peptides against chronic intestinal inflammation, Mediators Inflamm. 2020 (2020) 6817156. https://doi.org/10.1155/2020/6817156.

[15]

M.P. Moyer, L.A. Manzano, R.L. Merriman, et al., NCM460, a normal human colon mucosal epithelial cell line, In Vitro Cell Dev. Biol. Anim. 32 (1996) 315-317. https://doi.org/10.1007/BF02722955.

[16]

H. Zeng, D.P. Taussig, W.H. Cheng, et al., Butyrate inhibits cancerous HCT116 colon cell proliferation but to a lesser extent in noncancerous NCM460 colon cells, Nutrients 9 (2017) 25. https://doi.org/10.3390/nu9010025.

[17]

D.S.G. Nielsen, M. Fredborg, V. Andersen, et al., Reversible effect of dextran sodium sulfate on mucus secreting intestinal epithelial cells, J. Anim. Sci. 94 (2016) 467-471. https://doi.org/10.2527/jas.2015-9737.

[18]

Y. Araki, H. Sugihara, T. Hattori, In vitro effects of dextran sulfate sodium on a Caco-2 cell line and plausible mechanisms for dextran sulfate sodium-induced colitis, Oncol. Rep. 16 (2006) 1357-1362. https://doi.org/10.3892/or.16.6.1357.

[19]

C. Chelakkot, J. Ghim, S.H. Ryu, Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp. Mol. Med. 50 (2018) 1-9. https://doi.org/10.1038/s12276-018-0126-x.

[20]

I. Ordas, L. Eckmann, M. Talamini, et al., Ulcerative colitis, Lancet 380 (2012) 1606-1619. https://doi.org/10.1016/S0140-6736(16)32126-2.

[21]

L.Y. Niu, S.T. Jiang, L.J. Pan, Preparation and evaluation of antioxidant activities of peptides obtained from defatted wheat germ by fermentation, J. Food Sci. Technol. 50 (2013) 53-61. https://doi.org/10.1007/s13197-011-0318-z.

[22]

L. Wang, Y. Ding, X. Zhang, et al., Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination, Food Chem. 239 (2018) 416-426. https://doi.org/10.1016/j.foodchem.2017.06.090.

[23]

X. Sun, S. Zhang, C.C. Udenigwe, et al., Wheat germ-derived peptides exert antiadhesive activity against Helicobacter pylori: insights into structural characteristics of identified peptides, J. Agric. Food Chem. 68 (2020) 11954-11974. https://doi.org/10.1021/acs.jafc.0c04367.

[24]

D. He, Y. Wang, J. Lin, et al., Identification and characterization of alcohol-soluble components from wheat germ-apple fermented by Lactobacillus sp. capable of preventing ulcerative colitis of dextran sodium sulfate-induced mice, J. Func. Foods 64 (2020) 103642. https://doi.org/10.1016/j.jff.2019.103642.

[25]

H. Yang, X. Li, X. Li, et al., Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC, Anal. Bioanal. Chem. 407 (2015) 2529-2542. https://doi.org/10.1007/s00216-015-8486-8.

[26]

H. Yao, Y. Song, Y. Chen, et al., Molecular architecture of the SARS-CoV-2 virus, Cell 183 (2020) 730-738. https://doi.org/10.2139/ssrn.3654623.

[27]

A. Celaj, J. Markle, J. Danska, et al., Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation, Microbiome 2 (2014) 39. https://doi.org/10.1186/2049-2618-2-39.

[28]

J. Dalal, K. Gandy, J. Domen, Role of mesenchymal stem cell therapy in Crohn's disease, Pediatr. Res. 71 (2012) 445-451. https://doi.org/10.1038/pr.2011.56.

[29]

L.J. Saucedo, B.A. Edgar, Filling out the Hippo pathway, Nat. Rev. Mol. Cell Biol. 8 (2007) 613-621. https://doi.org/10.1038/nrm2221.

[30]

Y. Sun, W.Z. Liu, T. Liu, et al., Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis, J. Recept. Signal Transduct. Res. 35 (2015) 600-604. https://doi.org/10.3109/10799893.2015.1030412.

[31]

Y. Liu, J. Peng, T. Sun, et al., Epithelial EZH2 serves as an epigenetic determinant in experimental colitis by inhibiting TNF alpha-mediated inflammation and apoptosis, Proc. Natl. Acad. Sci. 114 (2017) E3796-E3805. https://doi.org/10.1073/pnas.1700909114.

[32]

J.M. García, C.C. Udenigwe, J. Duitama, et al., Peptidomic analysis of whey protein hydrolysates and prediction of their antioxidant peptides, Food Sci. Human Wellness 11(2) (2022) 349-355. https://doi.org/10.1016/j.fshw.2021.11.011.

[33]

J. Torres, S. Danese, J.F. Colombel, New therapeutic avenues in ulcerative colitis: thinking out of the box, Gut 62 (2013) 1642-1652. https://doi.org/10.1136/gutjnl-2012-303959.

[34]

T. Nunes, C. Bernardazzi, H.S. de Souza, Cell death and inflammatory bowel diseases: apoptosis, necrosis, and autophagy in the intestinal epithelium, Biomed. Res. Int. 2014 (2014) 218493. https://doi.org/10.1155/2014/218493.

[35]

J.V. Patankar, C. Becker, Cell death in the gut epithelium and implications for chronic inflammation, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 543-556. https://doi.org/10.1038/s41575-020-0326-4.

[36]

W. Zhang, H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells, Cell Res. 12 (2002) 9-18. https://doi.org/10.1038/sj.cr.7290105.

[37]

M. Li, P. Li, R.X. Tang, et al., Resveratrol and its derivates improve inflammatory bowel disease by targeting gut microbiota and inflammatory signaling pathways, Food Sci. Human Wellness 11(1) (2022) 22-31. https://doi.org/10.1016/j.fshw.2021.07.003.

[38]

Y. Mebratu, Y. Tesfaigzi, How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle. 8 (2009) 1168-1175. https://doi.org/10.4161/cc.8.8.8147.

[39]

Q. Li, H. Cheng, Y. Liu, et al., Activation of mTORC1 by LSECtin in macrophages directs intestinal repair in inflammatory bowel disease, Cell Death Dis. 11 (2020) 918. https://doi.org/10.1038/s41419-020-03114-4.

[40]

L. Yang, L. Miao, F. Liang, et al., The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration, Nat. Commun. 5 (2014) 5416. https://doi.org/10.1038/ncomms6416.

[41]

M. Hayes, C. Stanton, H. Slattery, et al., Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors, Appl. Environ. Microbiol. 73 (2007) 4658-4667. https://doi.org/10.1128/AEM.00096-07.

[42]

M. Miguel, I. Recio, M. Ramos, et al., Antihypertensive effect of peptides obtained from Enterococcus faecalis-fermented milk in rats, J. Dairy Sci. 89 (2006) 3352-3359. https://doi.org/10.3168/jds.S0022-0302(06)72372-4.

Food Science and Human Wellness
Pages 1464-1474
Cite this article:
He D, Zeng W, Wang Y, et al. Isolation and characterization of novel peptides from fermented products of Lactobacillus for ulcerative colitis prevention and treatment. Food Science and Human Wellness, 2022, 11(6): 1464-1474. https://doi.org/10.1016/j.fshw.2022.06.003

763

Views

48

Downloads

12

Crossref

10

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 19 August 2021
Revised: 22 September 2021
Accepted: 01 December 2021
Published: 18 July 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return