AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (841.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Formation mechanisms of ethyl acetate and organic acids in Kluyveromyces marxianus L1-1 in Chinese acid rice soup

Na Liua,b,cLikang Qina( )Laili HuaSong Miaoc( )
School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup (rice-acid soup) inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome. The quantity of K. marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K. marxianus L1-1. Importantly, the concentrations of ethyl acetate, ethanol, acetic acid, and L-lactic acid increased from day 1 to day 3. At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways based on the analysis results of transcriptome and proteome. The key genes and proteins including up-regulated alcohol dehydrogenase family, alcohol O-acetyltransferase, acetyl-CoA C-acetyltransferase, acyl-coenzyme A thioester hydrolase, and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways, starch and sucrose metabolism pathways, amino sugar and nucleotide sugar metabolism pathways, tricarboxylic acid (TCA) cycle, and pyruvate metabolism pathways, thus promoting the formation of ethyl acetate, organic acids, alcohols, and other esters. Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K. marxianus L1-1.

References

[1]

N. Liu, J.H. Pan, S. Miao, L.K. Qin, Microbial community in Chinese traditional fermented acid rice soup (rice-acid) and its correlations with key organic acids and volatile compounds, Food Res. Int. 137 (2020) 109672. http://doi.org/10.1016/j.foodres.2020.109672.

[2]

N. Liu, S. Miao, L.K. Qin, Screening and application of lactic acid bacteria and yeasts with L‐lactic acid‐producing and antioxidant capacity in traditional fermented rice acid, Food Sci. Nutr. 8 (2020) 1-17. http://doi.org/10.1002/fsn3.1900.

[3]

A. Karim, N. Gerliani, M. Ader, Kluyveromyces marxianus: an emerging yeast cell factory for applications in food and biotechnology, Int. J. Food Microbiol. 333 (2020) 108818. http://doi.org/10.1016/j.ijfoodmicro.2020.108818.

[4]

S. Suprayogi, M. Nurcholis, M. Murata, et al., Characteristics of kanMX4-inserted mutants that exhibit 2-deoxyglucose resistance in thermotolerant yeast Kluyveromyces marxianus, Open. Biotechnol. J. 10 (2016) 208-222. http://doi.org/10.2174/18740707016100100208.

[5]

B. Llorente, A. Malpertuy, G. Blandin, et al., Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxianus, FEBS Lett. 487 (2000) 71-75. http://doi.org/10.1016/S0014-5793(00)02283-3.

[6]

N. Lertwattanasakul, N. Rodrussamee, S. Limtong, et al., Utilization capability of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in thermotolerant yeast Kluyveromyces marxianus DMKU 3-1042, AMB Express. 1 (2011) 1-11. http://doi.org/10.1186/2191-0855-1-20.

[7]

K. Inokuma, J. Ishii, K.Y. Hara, et al., Complete genome sequence of Kluyveromyces marxianus NBRC1777, a nonconventional thermotolerant yeast, Genome Announc. 3 (2015) e00389-15. http://doi.org/10.1128/genomeA.00389-15.

[8]

W. Zhao, Q. Shu, G. He, et al., Reducing antigenicity of bovine whey proteins by Kluyveromyces marxianus fermentation combined with ultrasound treatment, Food Chem. 311 (2020) 125893. http://doi.org/10.1016/j.foodchem.2019.125893.

[9]

F.J. Reyes-Sánchez, J.B. Páez-Lerma, J.A. Rojas-Contreras, et al., Study of the enzymatic capacity of Kluyveromyces marxianus for the synthesis of esters, J. Mol. Microb. Biotech. 29 (2020) 1-9. http://doi.org/10.1159/000507551.

[10]

J.A. Posada, A.D. Patel, A. Roes, et al., Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products, Bioresour. Technol. 135 (2013) 490-499. http://doi.org/10.1016/j.biortech.2012.09.058.

[11]

Y.C. Park, C.E.H. Shaffer, G.N. Bennett, Microbial formation of esters, Appl. Microbiol. Biotechnol. 13 (2009) 85. http://doi.org/10.1007/s00253-009-2170-x.

[12]

C. Löser, T. Urit, P. Keil, et al., Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422, Appl. Microbiol. Biotechnol. 99 (2015) 1131-1144. http://doi.org/10.1007/s00253-014-6098-4.

[13]
S.L. Villarreal-Morales, D.B. Muñiz-Márquez, M. Michel-Michel, et al., Aguamiel a fresh beverage from Agave spp. sap with functional properties, In Natural Beverages. (2019) 179-208. Academic Press. http://doi.org/10.1016/B978-0-12-816689-5.00007-9.
[14]

Q. Huang, M. Xu, H. Zhang, et al., Transcriptome and proteome analyses of the molecular mechanisms associated with coix seed nutritional quality in the process of breeding, Food Chem. 272 (2019) 549-558. http://doi.org/10.1016/j.foodchem.2018.07.116.

[15]

C.Y. Zhou, C. Wang, C.B. Tang, et al., Label-free proteomics reveals the mechanism of bitterness and adhesiveness in Jinhua ham, Food Chem. 297 (2019) 125012. http://doi.org/10.1016/j.foodchem.2019.125012.

[16]

Q. Ma, C. Shi, C. Su, et al., Complementary analyses of the transcriptome and iTRAQ proteome revealed mechanism of ethylene dependent salt response in bread wheat (Triticum aestivum L.), Food Chem. 325 (2020) 126866. http://doi.org/10.1016/j.foodchem.2020.126866.

[17]

L. Nie, G. Wu, D.E. Culley, et al., Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications, Crit. Rev. Biotechnol. 27 (2007) 63-75. http://doi.org/10.1080/07388550701334212.

[18]

N. Liu, L. Qin, M. Mazhar, S. Miao, Integrative transcriptomic-proteomic analysis revealed the flavor formation mechanism and antioxidant activity in rice-acid inoculated with Lactobacillus paracasei and Kluyveromyces marxianus, J. Proteomics. 238 (2021) 104158. http://doi.org/10.1016/j.jprot.2021.104158.

[19]

R.J. Molyneux, P. Schieberle, Compound identification: a journal of agricultural and food chemistry perspective, J. Agric. Food Chem. 55 (2007) 4625-4629. http://doi.org/10.1021/jf070242j.

[20]

J. Guo, T. Yue, Y. Yuan, et al., Characterization of volatile and sensory profiles of apple juices to trace fruit origins and investigation of the relationship between the aroma properties and volatile constituents, LWT-Food Sci. Technol. 124 (2020) 109203. http://doi.org/10.1016/j.lwt.2020.109203.

[21]

F. Vararu, J. Moreno-García, M. Niculaua, et al., Fermentative volatilome modulation of muscat ottonel wines by using yeast starter cultures, LWT-Food Sci. Technol. 129 (2020) 109575. http://doi.org/10.1016/j.lwt.2020.109575.

[22]

H. Ni, W. Pan, Q. Jin, et al., Label-free proteomic analysis of serum exosomes from paroxysmal atrial fibrillation patients, Clin. Proteom. 18 (2021) 1. http://doi.org/10.1186/s12014-020-09304-8.

[23]

L.Z. Yong, H. Xing, W.L. Li, et al., Identification of racemic and chiral carbazole derivatives containing an isopropanolamine linker as prospective surrogates against plant pathogenic bacteria: in vitro and in vivo assays and quantitative proteomics, J. Agric. Food Chem, (2019) 7512-7525. http://doi.org/10.1021/acs.jafc.9b02036.

[24]

N. Lertwattanasakul, T. Kosaka, A. Hosoyama, et al., Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses, Biotechnol. Biofuels. 8 (2015) 1-14. http://doi.org/10.1186/s13068-015-0227-x.

[25]

N. Liu, L. Qin, X. Lu, et al., Physicochemical components and flavor properties of acid rice soup (rice-acid) fermented with Lactobacillus paracasei and/or Kluyveromyces marxianus, Food Biosci. 43 (2021) 101278. http://doi.org/10.1016/j.fbio.2021.101278.

[26]

G. Fan, C. Teng, D. Xu, et al., Improving ethyl acetate production in Baijiu manufacture by Wickerhamomyces anomalus and Saccharomyces cerevisiae mixed culture fermentations, BioMed Res. Int. 4 (2019) 1-11. http://doi.org/10.1155/2019/1470543.

[27]

O. Oloyede, J. Franco, D. Roos, et al., Antioxidative properties of ethyl acetate fraction of unripe pulp of Carica papaya in mice, J. Microbiol. Biotechnol. Food Sci. 9 (2020) 409-425. http://doi.org/13385178.

[28]

C. Rodrigues, L.P.S. Vandenberghe, A.L. Woiciechowski, et al., Production and application of lactic acid, In Current Developments in Biotechnology and Bioengineering (2017) 543-556. http://doi.org/10.1016/B978-0-444-63662-1.00024-5.

[29]

R.A. de Oliveira, A. Komesu, C.E.V. Rossell, et al., Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects, Biochem. Eng. J. 133 (2018) 219-239. http://doi.org/10.1016/j.bej.2018.03.003.

[30]

S.B. Kim, D.H. Kwon, J.B. Park, et al., Alleviation of catabolite repression in Kluyveromyces marxianus: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose, Biotechnol. Biofuels. 12 (2019) 1-9. http://doi.org/10.1186/s13068-019-1431-x.

[31]

S. Lane, H. Xu, E.J. Oh, et al., Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae, Sci. Rep. 8 (2018) 1-12. http://doi.org/10.1038/s41598-018-20804-4.

[32]

Y. Zhou, W. Zhang, Z. Liu, et al., Purification, characterization and synergism in autolysis of a group of 1,3-β-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies, Microbiology 161 (2015) 1978-1989. http://doi.org/10.1099/mic.0.000143.

[33]

L. Kang, X. Zhang, R. Wang, et al., β-Glucosidase BGL1 from coprinopsis cinerea exhibits a distinctive hydrolysis and transglycosylation activity for application in the production of 3-O-β-D-gentiobiosyl-D-laminarioligosaccharides, J. Agric. Food Chem. 67 (2019) 10744-10755. http://doi.org/10.1021/acs.jafc.9b04488.

[34]

X. Xu, S. Zhou, D.J. McClements, et al., Multistarter fermentation of glutinous rice with Fu brick tea: Effects on microbial, chemical, and volatile compositions, Food Chem. 309 (2020) 125790. http://doi.org/10.1016/j.foodchem.2019.125790.

[35]

K. Selvaraju, R. Gowsalya, R. Vijayakumar, et al., MGL2/YMR210w encodes a monoacylglycerol lipase in Saccharomyces cerevisiae, FEBS Lett. 590 (2016) 1174-1186. http://doi.org/10.1002/1873-3468.12136.

[36]

A.K. Löbs, R. Engel, C. Schwartz, et al., CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus, Biotechnol. Biofuels. 10 (2017) 164. http://doi.org/10.1186/s13068-017-0854-5.

[37]

K.J. Verstrepen, S.D. van Laere, J. Vercammen, et al., The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles, Yeast. 21 (2004) 367-377. http://doi.org/10.1002/yea.1100.

[38]

B. Nancolas, I.D. Bull, R. Stenner, et al., Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro, Yeast. 34 (2017) 239-251. http://doi.org/10.1002/yea.3229.

[39]

M. Marsafari, P. Xu, Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica, Metab. Eng. Commun. 10 (2020) e00121. http://doi.org/10.1016/j.mec.2019.e00121.

[40]

A.J. Kruis, M. Levisson, A.E. Mars, et al., Ethyl acetate production by the elusive alcohol acetyltransferase from yeast, Metab. Eng. 41 (2017) 92-101. http://doi.org/10.1016/j.ymben.2017.03.004.

[41]

P.R. Wheeler, R. Brosch, N.G. Coldham, et al., Functional analysis of a clonal deletion in an epidemic strain of Mycobacterium bovis reveals a role in lipid metabolism, Microbiology 154 (2008) 3731-3742. http://doi.org/10.1099/mic.0.2008/022269-0.

[42]

M. Parapouli, A. Sfakianaki, N. Monokrousos, et al., Comparative transcriptional analysis of flavour-biosynthetic genes of a native Saccharomyces cerevisiae strain fermenting in its natural must environment, vs. a commercial strain and correlation of the genes’ activities with the produced flavour compounds, J. Biol. Res. 26 (2019) 1-14. http://doi.org/10.1186/s40709-019-0096-8.

[43]

P. Das, I. Manna, P. Sil, et al., Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars, Plant Physiol. Biochem. 136 (2019) 76-91. http://doi.org/10.1016/j.plaphy.2018.12.026.

[44]

U. Lao-On, P.V. Attwood, S. Jitrapakdee, Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection, J. Mol. Med. 96 (2018) 237-247. http://doi.org/10.1007/s00109-018-1622-0.

[45]

T. Suzuki, N. Akiyama, A. Yoshida, et al., Biochemical characterization of archaeal homocitrate synthase from Sulfolobus acidocaldarius, FEBS Lett. 594 (2020) 126-134. http://doi.org/10.1002/1873-3468.13550.

[46]

E.M. Scott, L. Pillus, Homocitrate synthase connects amino acid metabolism to chromatin functions through Esa1 and DNA damage, Genes. Dev. 24 (2010) 1903-1913. http://doi.org/10.1101/gad.1935910.

[47]

A. Sienkiewicz-Porzucek, A. Nunes-Nesi, R. Sulpice, et al., Mild reductions in mitochondrial citrate synthase activity result in a compromised nitrate assimilation and reduced leaf pigmentation but have no effect on photosynthetic performance or growth, Plant Physiol. 147 (2008) 115-127. http://doi.org/10.1104/pp.108.117978.

[48]

D. Wischral, J.M. Arias, L.F. Modesto, et al., Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: Integrating xylose and glucose fermentation, Biotechnol. Prog. 35 (2019) e2718. http://doi.org/10.1002/btpr.2718.

[49]

C. Frezza, L. Zheng, O. Folger, et al., Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase, Nature 477 (2011) 225-228. http://doi.org/10.1038/nature10363.

[50]

R.S. Kazi, R.M. Banarjee, A.B. Deshmukh, et al., Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration, J. Proteomics 156 (2017) 104-112. http://doi.org/10.1016/j.jprot.2017.01.015.

Food Science and Human Wellness
Pages 45-56
Cite this article:
Liu N, Qin L, Hu L, et al. Formation mechanisms of ethyl acetate and organic acids in Kluyveromyces marxianus L1-1 in Chinese acid rice soup. Food Science and Human Wellness, 2023, 12(1): 45-56. https://doi.org/10.1016/j.fshw.2022.07.017

621

Views

36

Downloads

10

Crossref

9

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 13 August 2021
Revised: 28 October 2021
Accepted: 16 November 2021
Published: 09 August 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return