AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications

Yi Wanga,1 Wusigaleb,1Yangchao Luoa( )
Department of Nutritional Sciences, University of Connecticut, Storrs 06269, USA
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China

1 Authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

Protein colloidal nanoparticles (NPs) are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes. Food scientists are inspired by naturally occurring proteins to induce self-assembly behavior of protein by manipulating environmental parameters, providing opportunities to construct special and expected NPs. Zein and casein, the main proteins derived from corn and milk, are two examples of the most prevalently studied food proteins for nanoarchitectures in recent years. In this article, the compositions, structures, and physicochemical properties of these two proteins and casein derivatives are summarized as well as their interactions and characterizations. Strategies to fabricate zein-sodium caseinate based NPs are critically highlighted and illustrated. Particularly, applications such as encapsulation and delivery of bioactive compounds, producing food packaging for enhanced antioxidative and antimicrobial effects, and stabilization of emulsions to achieve fat replacement. Due to the imperative role of food proteins in diet composition, this review not only provides cutting-edge knowledge for nanoparticle construction but also opens new avenues for efficient utilization and exploitation of food proteins.

References

[1]

S.L. Kuan, F.R.G. Bergamini, T. Weil, Functional protein nanostructures: a chemical toolbox, Chem. Soc. Rev. 47(24) (2018) 9069-9105. https://doi.org/10.1039/C8CS00590G.

[2]

Y. Luo, Q. Wang, Y. Zhang, Biopolymer-based nanotechnology approaches to deliver bioactive compounds for food applications: a perspective on the past, present, and future, J. Agric. Food Chem. 68(46) (2020) 12993-13000. https://doi.org/10.1021/acs.jafc.0c00277.

[3]

W. Lu, K. Nishinari, G.O. Phillips, et al., Colloidal nutrition science to understand food-body interaction, Trends Food Sci. Technol. 109 (2021) 352-364. https://doi.org/10.1016/j.tifs.2021.01.037.

[4]

T.J. Anderson, B.P. Lamsal, Zein extraction from corn, corn products, and coproducts and modifications for various applications: a review, Cereal Chem, 88(2) (2011) 159-173. https://doi.org/10.1094/CCHEM-06-10-0091.

[5]

Y. Luo, B. Zhang, M. Whent, et al., Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study, Colloids Surf. B, 85(2) (2011) 145-152. https://doi.org/10.1016/j.colsurfb.2011.02.020.

[6]

M.F. Li, L. Chen, M.Z. Xu, et al., The formation of zein-chitosan complex coacervated particles: relationship to encapsulation and controlled release properties, Int. J. Biol. Macromol. 116 (2018) 1232-1239. https://doi.org/10.1016/j.ijbiomac.2018.05.107.

[7]

L.J. Wang, Y.Q. Hu, S.W. Yin, et al., Fabrication and characterization of antioxidant pickering emulsions stabilized by zein/chitosan complex particles (ZCPs), J. Agric. Food Chem. 63(9) (2015) 2514-2524. https://doi.org/10.1021/jf505227a.

[8]

Y. Yuan, H. Li, J. Zhu, et al., Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin, Int. J. Biol. Macromol 151 (2020) 1074-1083. https://doi.org/10.1016/j.ijbiomac.2019.10.149.

[9]

H. Li, D. Wang, C. Liu, et al., Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin, Food Hydrocoll. 87 (2019) 342-351. https://doi.org/10.1016/j.foodhyd.2018.08.002.

[10]

G.F.M. Bautista, M.L.P. Vidallon, K.C. Salamanez, et al., Nanodelivery system based on zein-alginate complexes enhances in vitro chemopreventive activity and bioavailability of pomelo [Citrus maxima (Burm.) Merr.] seed limonoids, J Drug Deliv Sci Technol. 54 (2019) 101296. https://doi.org/10.1016/j.jddst.2019.101296.

[11]

P. Oymaci, S.A. Altinkaya, Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite, Food Hydrocoll, 54 (2016) 1-9. https://doi.org/10.1016/j.foodhyd.2015.08.030.

[12]

Q. Liu, J. Cheng, X. Sun, et al., Preparation, characterization, and antioxidant activity of zein nanoparticles stabilized by whey protein nanofibrils, Int. J. Biol. Macromol. 167 (2021) 862-870. https://doi.org/10.1016/j.ijbiomac.2020.11.043.

[13]

J. Chen, J. Zheng, D.J. McClements, et al., Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: Preparation, characterization, and functional performance, Food Chem. 158 (2014) 466- 472. https://doi.org/10.1016/j.foodchem.2014.03.003.

[14]

M.J. Tsai, Y.M. Weng, Novel edible composite films fabricated with whey protein isolate and zein: Preparation and physicochemical property evaluation, LWT. 101 (2019) 567-574. https://doi.org/10.1016/j.lwt.2018.11.068.

[15]

Y. Luo, Food colloids binary and ternary nanocomplexes: Innovations and discoveries. Colloids Surf. B. 196 (2020) 111309. https://doi.org/10.1016/j.colsurfb.2020.111309.

[16]

Y. Luo, Q. Wang, Zein-based micro- and nano-particles for drug and nutrient delivery: A review, J. Appl. Polym. Sci. 131(16) (2014) 40696. https://doi.org/10.1002/app.40696.

[17]

Y. Zhang, L. Cui, X. Che, et al., Zein-based films and their usage for controlled delivery: Origin, classes and current landscape, J Control Release. 206 (2015) 206-219. https://doi.org/10.1016/j.jconrel.2015.03.030.

[18]

N. Matsushima, G.I. Danno, H. Takezawa, et al., Three-dimensional structure of maize α-zein proteins studied by small-angle X-ray scattering, Biochim Biophys Acta Biomembr. 1339(1) (1997) 14-22. https://doi.org/10.1016/S0167-4838(96)00212-9.

[19]

Q. Wang, W. Xian, S. Li, et al., Topography and biocompatibility of patterned hydrophobic/hydrophilic zein layers, Acta Biomater. 4(4) (2008) 844-8451. https://doi.org/10.1016/j.actbio.2008.01.017.

[20]

A.R. Patel, K.P. Velikov, Zein as a source of functional colloidal nano- and microstructures, Curr Opin Colloid Interface Sci. 19(5) (2014) 450-458. https://doi.org/10.1016/j.cocis.2014.08.001.

[21]

C. Sun, Z. Xiong, J. Zhang, et al., Environmental parameters-dependent self-assembling behaviors of α-zein in aqueous ethanol solution studied by atomic force microscopy, Food Chem. 331 (2020) 127349. https://doi.org/10.1016/j.foodchem.2020.127349.

[22]

Q. Zhong, M. Jin, Zein nanoparticles produced by liquid-liquid dispersion, Food Hydrocoll. 23(8) (2009) 2380-2387. https://doi.org/10.1016/j.foodhyd.2009.06.015.

[23]

Y. Wang, G.W. Padua, Nanoscale characterization of zein self-assembly, Langmuir. 28(5) (2012) 2429-2435. https://doi.org/10.1021/la204204j.

[24]

B.Z. An, X.C. Wu, M.J. Li, et al., Hydrophobicity-modulating self-assembled morphologies of α-zein in aqueous ethanol. Int. J. Food Sci. Technol . 51(12) (2016) 2621-2629. https://doi.org/10.1111/ijfs.13248.

[25]

C.H. Tang, Assembled milk protein nano-architectures as potential nanovehicles for nutraceuticals, Adv Colloid Interface Sci. 292 (2021) 102432. https://doi.org/10.1016/j.cis.2021.102432.

[26]

H.Q. Chen, H. WOOTEN, L. THOMPSON, et al., 2-Nanoparticles of casein micelles for encapsulation of food ingredients, Nanostructures for Food Encapsulation Purposes. (2019) 39-68. https://doi.org/10.1016/B978-0-12-815663-6.00002-1.

[27]
T. Huppertz, P.F. Fox, A.L. Kelly, The caseins: Structure, stability, and functionality//Proteins in food processing, 2nd ed., Woodhead Publishing, (2018) 49-92. https://doi.org/10.1016/B978-0-08-100722-8.00004-8.
[28]

H.J. Vreeman, S. VIsser, C.J. Slangen, et al., Characterization of bovine κ-casein fractions and the kinetics of chymosin-induced macropeptide release from carbohydrate-free and carbohydrate-containing fractions determined by high-performance gel-permeation chromatography, Biochem. J. 240(1) (1986) 87-97. https://doi.org/10.1042/bj2400087.

[29]

T. Huppertz, I. Gazi, H. Luyten, et al., Hydration of casein micelles and caseinates: implications for casein micelle structure, Int. Dairy J. 74 (2017) 1-11. https://doi.org/10.1016/j.idairyj.2017.03.006.

[30]

D.G. Dalgleish, On the structural models of bovine casein micelles—review and possible improvements, Soft Matter. 7(6) (2011) 2265-2272. https://doi.org/10.1039/C0SM00806K.

[31]

G.N. Smith, E. Brok, M.V. Christiansen, et al., Casein micelles in milk as sticky spheres, Soft Matter. 16(43) (2020) 9955-9963. https://doi.org/10.1039/D0SM01327G.

[32]
P. Walstra, Dairy technology: principles of milk properties and processes. CRC Press, 1999.
[33]

T. Han,M. Wang, Y. Wang, et al., Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. Lwt. 130 (2020). https://doi.org/10.1016/j.lwt.2020.109560.

[34]

A. HadjSadok, A. Pitkowski, T. Nicolai, et al., Characterisation of sodium caseinate as a function of ionic strength, pH and temperature using static and dynamic light scattering, Food Hydrocoll. 22(8) (2008) 1460-1466. https://doi.org/10.1016/j.foodhyd.2007.09.002.

[35]

S.M. D'Addio, R.K. Prud'homme, Controlling drug nanoparticle formation by rapid precipitation, Adv. Drug Deliv. Rev. 63(6) (2011) 417-426. https://doi.org/10.1016/j.addr.2011.04.005.

[36]

G. Davidov-Pardo, I.J. Joye, D.J. McClements, Food-grade proteinbased nanoparticles and microparticles for bioactive delivery: fabrication, characterization, and utilization, in protein and peptide nanoparticles for drug delivery, R. Donev. 98 (2015) 293-325. https://doi.org/10.1016/bs.apcsb.2014.11.004.

[37]

L. Muthuselvi, A. Dhathathreyan, Simple coacervates of zein to encapsulate gitoxin, Colloids Surf. B. 51(1) (2006) 39-43. https://doi.org/10.1016/j.colsurfb.2006.05.012.

[38]

F. Li, Y. Chen, S. Liu, et al., Size-controlled fabrication of zein nano/ microparticles by modified anti-solvent precipitation with/without sodium caseinate, Int. J. Nanomed. 12 (2017) 81-97. https://dx.doi.org/10.2147%2FIJN.S143733.

[39]

S. Zhang, Y. Han, Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles, PLoS One. 13(3) (2018) 0194951. https://doi.org/10.1371/journal.pone.0194951.

[40]

D. Zheng, Q.F. Zhang, Bioavailability enhancement of astilbin in rats through zein-caseinate nanoparticles. J. Agric. Food Chem. 67(20) (2019) 5746-5753. https://doi.org/10.1021/acs.jafc.9b00018.

[41]

O.A. Ahmed, K.M. Hosney, M.M. Al-Sawahli, et al., Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics, Drug Des. Devel. Ther. 9 (2015) 655- 662. https://dx.doi.org/10.2147%2FDDDT.S76194.

[42]

A.R. Patel,, E.C.M. Bouwens, K.P. Velikov, Sodium caseinate stabilized zein colloidal particles, J. Agric. Food Chem. 58(23) (2010) 12497-12503. https://doi.org/10.1021/jf102959b.

[43]

Y. Luo, Z. Teng, T.T. Wang, et al., Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate, J. Agric. Food Chem. 61(31) (2013) 7621-7629. https://doi.org/10.1021/jf402198r.

[44]

S. Ebert, C.K. Koo, J. Weiss, et al., Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: caseinate-coated zein nanoparticles, Food Res. Int. 92 (2017) 48-55. https://doi.org/10.1016/j.foodres.2016.12.020.

[45]

J. Liu, Y. Zhang, S. He, et al., Microbial transglutaminase-induced cross-linking of sodium caseinate as the coating stabilizer of zein nanoparticles, LWT. 138 (2021) 110624. https://doi.org/10.1016/j.lwt.2020.110624.

[46]

N.J. Rodriguez, Q. Hu, Y. Luo, Oxidized dextran as a macromolecular crosslinker stabilizes the zein/caseinate nanocomplex for the potential oral delivery of curcumin, Molecules. 24(22) 2019 4061. https://doi.org/10.3390/molecules24224061.

[47]

C. Chang, T. Wang, Q. Hu, et al., Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: Effect of polysaccharide type and chemical cross-linking, Food Hydrocoll. 72 (2017) 254-262. https://doi.org/10.1016/j.foodhyd.2017.05.039.

[48]

C. Chang, T. Wang, Q. Hu, et al., Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll. 70 (2017) 143-151. https://doi.org/10.1016/j.foodhyd.2017.03.033.

[49]

F. Shirmohammadli, M. Nikzad, M. Ghoreyshi, et al., Preparation and characterization of zein/sodium caseinate/xanthan gum complex for encapsulation of piperine and its in vitro release study. Food Biophys. 16(2) (2021) 254-269. https://doi.org/10.1007/s11483-021-09668-w.

[50]

Q. Liu, Y. Jing, C Han, et al., Encapsulation of curcumin in zein/ caseinate/ sodium alginate nanoparticles with improved physicochemical and controlled release properties, Food Hydrocoll. 93 (2019) 432-442. https://doi.org/10.1016/j.foodhyd.2019.02.003.

[51]

B. Zhang, Y. Luo, Q. Wang, Effect of acid and base treatments on structural, rheological, and antioxidant properties of alpha-zein, Food Chem. 124(1) (2011) 210-220. https://doi.org/10.1016/j.foodchem.2010.06.019.

[52]

K. Pan, Q. Zhong, Improving clarity and stability of skim milk powder dispersions by dissociation of casein micelles at pH 11.0 and acidification with citric acid, J. Agric. Food Chem. 61(38) (2013) 9260-9268. https://doi.org/10.1021/jf402870y.

[53]

Q. Liu, Y. Qin, J. Chen, et al., Fabrication, characterization, physicochemical stability and simulated gastrointestinal digestion of pterostilbene loaded zein-sodium caseinate-fucoidan nanoparticles using pH-driven method, Food Hydrocoll. 119 (2021) 106851. https://doi.org/10.1016/j.foodhyd.2021.106851.

[54]

K. Pan, Q. Zhong, Low energy, organic solvent-free co-assembly of zein and caseinate to prepare stable dispersions, Food Hydrocoll. 52 (2016) 600-606. https://doi.org/10.1016/j.foodhyd.2015.08.014.

[55]

L. Wang, Y. Zhang, Eugenol nanoemulsion stabilized with zein and sodium caseinate by self-assembly, J. Agric. Food Chem. 65(14) (2017) 2990-2998. https://doi.org/10.1021/acs.jafc.7b00194.

[56]

L. Wang, J. Xue, Y. Zhang, Preparation and characterization of curcumin loaded caseinate/zein nanocomposite film using pH-driven method, Ind Crops Prod. 130 (2019) 71-80. https://doi.org/10.1016/j.indcrop.2018.12.072.

[57]

K. Pan, Y. Luo, Y. Gan, et al., pH-driven encapsulation of curcumin in selfassembled casein nanoparticles for enhanced dispersibility and bioactivity, Soft Matter. 10(35) (2014) 6820-6830. https://doi.org/10.1039/C4SM00239C.

[58]

H. Zhang, Y. Fu, Y. Xu, et al., One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis Food Funct. 10(2) (2019) 635-645. https://doi.org/10.1039/C8FO01614C.

[59]

H, Chen, Q. Zhong, Processes improving the dispersibility of spray-dried zein nanoparticles using sodium caseinate, Food Hydrocoll. 35 (2014) 358- 366. https://doi.org/10.1016/j.foodhyd.2013.06.012.

[60]

S. Li, Z. Ji, J. Pang, et al., Polydopamine-mediated carrier with stabilizing and self-antioxidative properties for polyphenol delivery systems, Ind. Eng. Chem. Res. 57(2) (2018) 590-599. https://doi.org/10.1021/acs.iecr.7b04070.

[61]

J. Liebscher, Chemistry of polydopamine–scope, variation, and limitation, Eur. J. Org. Chem. 2019(31-32) (2019) 4976-4994. https://doi.org/10.1002/ejoc.201900445.

[62]

S. Kim, J. Xu, Aggregate formation of zein and its structural inversion in aqueous ethanol, J. Cereal Sci. 47(1) (2008) 1-5. https://doi.org/10.1016/j.jcs.2007.08.004.

[63]

Y.C. Yin, S.W. Yin, X.Q. Yang, et al., Surface modification of sodium caseinate films by zein coatings, Food Hydrocoll. 36 (2014) 1-8. https://doi.org/10.1016/j.foodhyd.2013.08.027.

[64]

Y. Feng, Y. Lee, Surface modification of zein colloidal particles with sodium caseinate to stabilize oil-in-water pickering emulsion, Food Hydrocoll. 56 (2016) 292-302. https://doi.org/10.1016/j.foodhyd.2015.12.030.

[65]

M. Veneranda, Q. Hu, T. Wang, et al., Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol, Lwt. 89 (2018) 596-603. https://doi.org/10.1016/j.lwt.2017.11.040.

[66]

D. Xiao, P.M. Davidson, Q. Zhong, Spray-dried zein capsules with coencapsulated nisin and thymol as antimicrobial delivery system for enhanced antilisterial properties, J. Agric. Food Chem. 59(13) (2011) 7393- 7404. https://doi.org/10.1021/jf200774v.

[67]

Z. Alinaqi, A. Khezri, H. Rezaeinia, Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles, Int J Biol Macromol. 173 (2021) 193-202. https://doi.org/10.1016/j.ijbiomac.2021.01.118.

[68]

Q. Hu, S. Hu, E. Fleming, et al., Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity, Int J Biol Macromol. 151 (2020) 747-756. https://doi.org/10.1016/j.ijbiomac.2020.02.170.

[69]

H. Chen, B. Xu, C. Zhou, et al., Multi-frequency ultrasound-assisted dialysis modulates the self-assembly of alcohol-free zein-sodium caseinate to encapsulate curcumin and fabricate composite nanoparticles, Food Hydrocoll. 122 (2022) 107110. https://doi.org/10.1016/j.foodhyd.2021.107110.

[70]

M. Tang, F. Liu, Q. Wang, et al., Physicochemical characteristics of ginger essential oil nanoemulsion encapsulated by zein/NaCas and antimicrobial control on chilled chicken , Food Chem. 374 (2021) 131624. https://doi.org/10.1016/j.foodchem.2021.131624.

[71]

M.A. Khan, C. Yue, Z. Fang, et al., Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol. J. Food Eng, 258 (2019) 45-53. https://doi.org/10.1016/j.jfoodeng.2019.04.010.

[72]

L. Chaunier, L. Viau, X. Falourd, et al., A drug delivery system obtained by hot-melt processing of zein plasticized by a pharmaceutically active ionic liquid, J Mater Chem B. 8(21) (2020) 4672-4679. https://doi.org/10.1039/D0TB00326C.

[73]

M. Li, H. Zheng, M. Lin, et al., Characterization of the protein and peptide of excipient zein by the multi-enzyme digestion coupled with nanoLC-MS/MS. Food Chem. 321 (2020) 126712. https //doi.org/10.1016/j.foodchem.2020.126712.

[74]

Y. Luo, Perspectives on important considerations in designing nanoparticles for oral delivery applications in food, J. Agric. Food Res. 2 (2020) 100031. https://doi.org/10.1016/j.jafr.2020.100031.

[75]

Q. Hu, Y. Luo, Chitosan-based nanocarriers for encapsulation and delivery of curcumin: a review, Int J Biol Macromol. 179 (2021) 125-135. https://doi.org/10.1016/j.ijbiomac.2021.02.216.

[76]

A. Patel, Y. Hu, J.K. Tiwari, et al., Synthesis and characterisation of zein– curcumin colloidal particles. Soft Matter. 6(24) (2010) 6192-6199. https://doi.org/10.1039/C0SM00800A..

[77]

Q. Liu, C. Han, Y. Tian, et al., Fabrication of curcumin-loaded zein nanoparticles stabilized by sodium caseinate/sodium alginate: curcumin solubility, thermal properties, rheology, and stability. Process Biochem. 94 (2020) 30-38. https://doi.org/10.1016/j.procbio.2020.03.017.

[78]

Q.Y. Eng, P.V. Thanikachalam, S. Ramamurthy, Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol. 210 (2018) 296-310. https://doi.org/10.1016/j.jep.2017.08.035.

[79]

N. Khan, H. Mukhtar, Tea polyphenols for health promotion. Life Sci. 81(7) (2007) 519-33. https://doi.org/10.1016/j.lfs.2007.06.011.

[80]

X. Yan, X. Zhang, D.J. McClements, et al., Co-encapsulation of epigallocatechin gallate (EGCG) and curcumin by two proteins-based nanoparticles: role of EGCG, J Agric Food Chem. 67(48) (2019) 13228- 13236. https://doi.org/10.1021/acs.jafc.9b04415.

[81]

K.K. Li, S.W. Yin, X.Q. Yang, et al., Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles, J Agric Food Chem. 60(46) (2012) 11592-600. https://doi.org/10.1021/jf302752v.

[82]

H. Chen, Y. Zhang, Q. Zhong, Physical and antimicrobial properties of spray-dried zein–casein nanocapsules with co-encapsulated eugenol and thymol. J. Food Eng. 144 (2015) 93-102. https://doi.org/10.1016/j.jfoodeng.2014.07.021.

[83]

C.H. Tang, Assembly of food proteins for nano- encapsulation and delivery of nutraceuticals (a mini-review). Food Hydrocoll. 117 (2021) 106710. https://doi.org/10.1016/j.foodhyd.2021.106710.

[84]

C.C. Sun, H. Su, G.D. Zhang, et al., Fabrication and characterization of dihydromyricetin encapsulated zein-caseinate nanoparticles and its bioavailability in rat, Food Chem. 330 (2020) 127245. https://doi.org/10.1016/j.foodchem.2020.127245.

[85]

G. Heep, A. Almeida, R. Marcano, et al., Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid, Int J Biol Macromol. 138 (2019) 244-251. https://doi.org/10.1016/j.ijbiomac.2019.07.030.

[86]

K.N. Kim, S.J. Heo, S.M. Kang, et al., Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway, Toxicol In Vitro. 24(6) (2010) 1648-54. https://doi.org/10.1016/j.tiv.2010.05.023.

[87]

H. Li, Y. Xu, X. Sun, et al., Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation, Food Hydrocoll. 84 (2018) 379-388. https://doi.org/10.1016/j.foodhyd.2018.06.032.

[88]

X. Bao, K. Qian, P. Yao, Insulin-and cholic acid-loaded zein/casein–dextran nanoparticles enhance the oral absorption and hypoglycemic effect of insulin, J Mater Chem B. 9(31) (2021) 6234-6245. https://doi.org/10.1039/D1TB00806D.

[89]

H.N. Nguyen, S.P. Wey, J.H. Juang, et al., The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials. 32(10) (2011) 2673-2682. https://doi.org/10.1016/j.biomaterials.2010.12.044.

[90]

X. Bao, K. Qian, P. Yao, Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice, J. Nanobiotechnology. 18(1) (2020) 1-15. https://doi.org/10.1186/s12951-020-00619-0.

[91]

H. Bagheri Darvish, A. Bahrami, S.M. Jafai, et al., Micro/nanoencapsulation strategy to improve the efficiency of natural antimicrobials against Listeria monocytogenes in food products, Crit Rev Food Sci Nutr. 61(8) (2021) 1241- 1259. https://doi.org/10.1080/10408398.2020.1755950.

[92]

X. Mo, X. Peng, X. Liang, et al., Development of antifungal gelatinbased nanocomposite films functionalized with natamycin-loaded zein/ casein nanoparticles, Food Hydrocoll. 113 (2021). https://doi.org/10.1016/j.foodhyd.2020.106506.

[93]

Y. Wu, Y. Luo, Q. Wang, Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method, LWT. 48(2) (2012) 283-290. https://doi.org/10.1016/j.lwt.2012.03.027.

[94]

T.P. Santos, P.K. Okuro, R.L. Cunha, Pickering emulsions as a platform for structures design: cutting-edge strategies to engineer digestibility, Food Hydrocoll. 116 (2021). https://doi.org/10.1016/j.foodhyd.2021.106645.

[95]

Z.M. Gao, X.Q. Wang, N.N. Wu, et al., Protein-based pickering emulsion and oil gel prepared by complexes of zein colloidal particles and stearate, J. Agric. Food Chem. 62(12) (2014) 2672-2678. https://doi.org/10.1021/jf500005y.

[96]

J.W. De Folter, M.W. Van Ruijven, K.P. Velikov, Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein, Soft Matter. 8 (2012) 6807-6815. https://doi.org/10.1039/C2SM07417F.

[97]

A. San-Miguel, S.H. Behrens, Influence of nanoscale particle roughness on the stability of Pickering emulsions, Langmuir. 28(33) (2012) 12038-12043. https://doi.org/10.1021/la302224v.

[98]

C. Sun, Y. Gao, Q. Zhong, Effects of acidification by glucono-delta-lactone or hydrochloric acid on structures of zein-caseinate nanocomplexes selfassembled during a pH cycle, Food Hydrocoll. 82 (2018) 173-185. https://doi.org/10.1016/j.foodhyd.2018.04.007.

[99]

F.C. Wang, A.J. Gravelle, A.I. Blake, et al., Novel trans fat replacement strategies, Curr. Opin. Food Sci. 7 (2016) 27-34. https://doi.org/10.1016/j.cofs.2015.08.006.

[100]

X. Liu, J. Guo, Z.L. Wan, et al., Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers, Food Hydrocoll. 77 (2018) 168-175. https://doi.org/10.1016/j.foodhyd.2017.09.032.

[101]

M. Kouhi, M.P. Prabhakaran, S. Ramakrishna, Edible polymers: an insight into its application in food, biomedicine and cosmetics, Trends Food Sci. Technol. 103 (2020) 248-263. https://doi.org/10.1016/j.tifs.2020.05.025.

[102]

L.J. Wang, Y.C. Yin, S.W. Yin, et al., Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation, J Agric Food Chem. 61(46) (2013) 11089-11097. https://doi.org/10.1021/jf4029943.

[103]

L. Kuai, F. Liu, Y. Ma, et al., Regulation of nano-encapsulated tea polyphenol release from gelatin films with different Bloom values, Food Hydrocoll. 108 (2020) 106045. https://doi.org/10.1016/j.foodhyd.2020.106045.

[104]

V.A. Gaona-Sánchez, G. Calderon-Dominguez, E. Morales-Sanchez, et al., Preparation and characterisation of zein films obtained by electrospraying, Food Hydrocoll. 49 (2015) 1-10. https://doi.org/10.1016/j.foodhyd.2015.03.003.

[105]

Y. Li, Y. Bai, J. Huang, et al., Airglow discharge plasma treatment affects the surface structure and physical properties of zein films, J. Food Eng. 273 (2020) 109813. https://doi.org/10.1016/j.jfoodeng.2019.109813.

[106]

C. Sun, Y. Gao, Q. Zhong, Properties of ternary biopolymer nanocomplexes of zein, sodium caseinate, and propylene glycol alginate and their functions of stabilizing high internal phase pickering emulsions, Langmuir. 34(31) (2018) 9215-9227. https://doi.org/10.1021/acs.langmuir.8b01887.

[107]

Y. Pan, R.V. Tikekar, M.S. Wang, et al., Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds, Food Hydrocoll. 43 (2015) 82-90. https://doi.org/10.1016/j.foodhyd.2014.05.002.

[108]

Y.H. Wang, M. Zhao, S.A. Barker, et al., A spectroscopic and thermal investigation into the relationship between composition, secondary structure and physical characteristics of electrospun zein nanofibers, Mater Sci Eng C Mater Biol Appl. 98 (2019) 409-418. https://doi.org/10.1016/j.msec.2018.12.134.

[109]

J. Liu, Y. Zhang, W. Liu, et al., A Novel zein-based composite nanoparticlesfor improving bioaccessibility and anti-inflammatory activity of resveratrol,Foods. 10(11) (2021) 2773. https://doi.org/10.3390/foods10112773.

[110]

Y.T. Ruan, W.J. Wang, G.D. Zheng, et al., In vivo and in vitro comparison of three astilbin encapsulated zein nanoparticles with different outer shells, Food Funct. 12(20) (2021) 9784-9792. https://doi.org/10.1039/D1FO01522B.

[111]

J.F. Zhou, G.D. Zheng, W.J. Wang, et al., Physicochemical properties and bioavailability comparison of two quercetin loading zein nanoparticles with outer shell of caseinate and chitosan , Food Hydrocoll. 120 (2021) 106959. https://doi.org/10.1016/j.foodhyd.2021.106959.

[112]

R. Wang, Y. Wang, W. Guo, et al., Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation, Food Hydrocoll. 117 (2021) 106663. https://doi.org/10.1016/j.foodhyd.2021.106663.

Food Science and Human Wellness
Pages 337-350
Cite this article:
Wang Y, Wusigale, Luo Y. Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications. Food Science and Human Wellness, 2023, 12(2): 337-350. https://doi.org/10.1016/j.fshw.2022.07.036

590

Views

76

Downloads

22

Crossref

17

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 22 December 2021
Revised: 20 February 2022
Accepted: 28 February 2022
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return