AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review

Lixin ZhengaYang LiuaShijie TangbWancong Zhangb( )Kit-Leong Cheonga( )
Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, China
Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515063, China
Show Author Information

Abstract

Marine algae are valuable sources of health-promoting molecules that have been consumed by Asians for decades. Among aquatic flora, marine algae stand out in terms of high content of marine algae polysaccharides (MAP) such as carrageenan, alginate, fucoidan, laminaran, agarose, rhamnan, and ulvan. When hydrolyzed, MAP generate marine algae oligosaccharides (MAO), which have attracted interest in recent years due to their superior solubility compared with MAP. Besides, MAO have been demonstrated numerous biological activities including antioxidant, antidiabetic, anti-inflammatory, antimicrobial, and prebiotic activities. Thus, this review summarizes the main chemical classes of MAO, their sources, and the main processes used for their production (i.e., physical, chemical, and biological methods), coupled with a discussion of the advantages and disadvantages of these methods. Highlights of the biological activities of MAO and their potential applications in food, nutraceutical, and pharmaceuticals would also be discussed and summarized.

References

[1]

M.A. Hannan, A.A.M. Sohag, R. Dash, et al., Phytosterols of marine algae: insights into the potential health benefits and molecular pharmacology, Phytomedicine (2020) 153201. https://doi.org/10.1016/j.phymed.2020.153201.

[2]

N. Wei, J. Quarterman, Y.S. Jin, Marine macroalgae: an untapped resource for producing fuels and chemicals, Trends Biotechnol. 31 (2013) 70-77. https://doi.org/10.1016/j.tibtech.2012.10.009.

[3]

L.X. Zheng, X.Q. Chen, K.L. Cheong, Current trends in marine algae polysaccharides: the digestive tract, microbial catabolism, and prebiotic potential, Int. J. Biol. Macromol. 151 (2020) 344-354. https://doi.org/10.1016/j.ijbiomac.2020.02.168.

[4]

D.D.B. Gurpilhares, L.P. Cinelli, N.K. Simas, et al., Marine prebiotics: polysaccharides and oligosaccharides obtained by using microbial enzymes, Food Chem. 280 (2019) 175-186. https://doi.org/10.1016/j.foodchem.2018.12.023.

[5]

H.M.D. Wang, X.C. Li, D.J. Lee, et al., Potential biomedical applications of marine algae, Bioresour. Technol. 244 (2017) 1407-1415. https://doi.org/10.1016/j.biortech.2017.05.198.

[6]

D.H. Ngo, S.K. Kim, Sulfated polysaccharides as bioactive agents from marine algae, Int. J. Biol. Macromol. 62 (2013) 70-75. https://doi.org/10.1016/j.ijbiomac.2013.08.036

[7]

Q. Shang, H. Jiang, C. Cai, et al., Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: an overview, Carbohydr. Polym. 179 (2018) 173-185. https://doi.org/10.1016/ j.carbpol.2017.09.059.

[8]

D.J.R. Maria, D.M. Alcina, D.M. Rui, Marine polysaccharides from algae with potential biomedical applications, Mar. Drugs 13 (2015) 2967-3028. http://dx.doi.org/10.3390/md13052967.

[9]

X.Y. Liu, D. Liu, G.P. Lin, et al., Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice, Int. J. Biol. Macromol. 139 (2019) 342-351. https://doi.org/10.1016/j.ijbiomac.2019.07.195.

[10]

M.Y. Zou, S.P. Nie, J.Y. Yin, et al., Ascorbic acid induced degradation of polysaccharide from natural products: a review, Int. J. Biol. Macromol. 151 (2020) 483-491. https://doi.org/10.1016/j.ijbiomac.2020.02.193.

[11]

C. Zhao, Y. Wu, X. Liu, et al., Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides, Trends Food Sci. Technol. 66 (2017) 135-145. https://doi.org/10.1016/j.tifs.2017.06.008.

[12]

C.T. Nordgård, S.V. Rao, K.I. Draget, The potential of marine oligosaccharides in pharmacy, Bioactive Carbohydrates and Dietary Fibre 18 (2019) 100178. https://doi.org/10.1016/j.bcdf.2019.100178.

[13]

K.K.A. Sanjeewa, J.S. Lee, W.S. Kim, et al., The potential of brown-algae polysaccharides for the development of anticancer agents: an update on anticancer effects reported for fucoidan and laminaran, Carbohydr. Polym. 177 (2017) 451-459. https://doi.org/10.1016/j.carbpol.2017.09.005.

[14]

M. Bae, M.B. Kim, Y.K. Park, et al., Health benefits of fucoxanthin in theprevention of chronic diseases, Biochim. Biophys. Acta Mol. Cell Biol.Lipids (2020) 158618. https://doi.org/10.1016/j.bbalip.2020.158618.

[15]

S.M. Etman, Y.S.R. Elnaggar, O.Y. Abdallah, Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring, Int. J. Biol. Macromol. 147 (2020) 799-808. https://doi.org/10.1016/ j.ijbiomac.2019.11.191.

[16]

C. Zhang, P. Howlader, T. Liu, et al., Alginate oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana, Carbohydr. Polym. 225 (2019) 115221. https://doi.org/10.1016/j.carbpol.2019.115221.

[17]

L.A. Tziveleka, E. Ioannou, V. Roussis, Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: a review, Carbohydr. Polym. 218 (2019) 355-370. https://doi.org/10.1016/ j.carbpol.2019.04.074.

[18]

O. Coste, E.J. Malta, J.C. López, et al., Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract, Algal Res. 10 (2015) 224-231. https://doi.org/10.1016/j.algal.2015.05.014.

[19]

H. Tanaka, Y. Hamaya, N. Nishiwaki, et al., A concise synthesis of rhamnan oligosaccharides with alternating α-(1→2)/(1→3)-linkages and repeating α-(1→3)-linkages by iterative α-glycosylation using disaccharide building blocks, Carbohydr. Res. 455 (2018) 23-31. https://doi.org/10.1016/j.carres.2017.11.005.

[20]

J. Vera, J. Castro, A. Gonzalez, et al., Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants, Mar. Drugs 9 (2011). http://dx.doi.org/10.3390/md9122514.

[21]

Y. Zhang, B. Lang, D. Zeng, et al., Truncation of κ-carrageenase for higher κ-carrageenan oligosaccharides yield with improved enzymatic characteristics, Int. J. Biol. Macromol. 130 (2019) 958-968. https://doi.org/10.1016/j.ijbiomac.2019.02.109.

[22]

H.M. Chen, X.J. Yan, Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system, Biochim. Biophys. Acta-Gen. Subj. 1722 (2005) 103-111. https://doi.org/10.1016/j.bbagen.2004.11.016.

[23]

X. Zhang, J.J. Aweya, Z.X. Huang, et al., In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota, Carbohydr. Polym. 234 (2020) 115894. https://doi.org/10.1016/j.carbpol.2020.115894.

[24]

B. Kazłowski, C.L. Pan, Y.T. Ko, Monitoring and preparation of neoagaroand agaro-oligosaccharide products by high performance anion exchange chromatography systems, Carbohydr. Polym. 122 (2015) 351-358. https://doi.org/10.1016/j.carbpol.2014.09.003.

[25]

Z. Su, J. Luo, X. Li, et al., Enzyme membrane reactors for production of oligosaccharides: a review on the interdependence between enzyme reaction and membrane separation, Sep. Purif. Technol. (2020) 116840. https://doi.org/10.1016/j.seppur.2020.116840.

[26]

F.J. Moreno, N. Corzo, A. Montilla, et al., Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides, Current Opinion in Food Science 13 (2017) 50-55. https://doi.org/10.1016/j.cofs.2017.02.009.

[27]

X. Yuan, J. Zheng, S. Jiao, et al., A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production, Carbohydr. Polym. 220 (2019) 60-70. https://doi.org/10.1016/j.carbpol.2019.05.050.

[28]

E.J. Yun, H.T. Kim, K.M. Cho, et al., Pretreatment and saccharification of red macroalgae to produce fermentable sugars, Bioresour. Technol. 199 (2016) 311-318. https://doi.org/10.1016/j.biortech.2015.08.001.

[29]

H.M. Chen, L. Zheng, W. Lin, et al., Product monitoring and quantitation of oligosaccharides composition in agar hydrolysates by precolumn labeling HPLC, Talanta 64 (2004) 773-777. https://doi.org/10.1016/j.talanta.2004.04.002.

[30]

M. Liu, L. Liu, H.F. Zhang, et al., Alginate oligosaccharides preparation, biological activities and their application in livestock and poultry, J. Integr. Agric. 20 (2021) 24-34. https://doi.org/10.1016/S2095-3119(20)63195-1.

[31]

E. Coelho, M.A.M. Rocha, J.A. Saraiva, et al., Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides, Carbohydr. Polym. 99 (2014) 415-422. https://doi.org/10.1016/j.carbpol.2013.09.003.

[32]

S. Liang, W. Liao, X. Ma, et al., H2O2 oxidative preparation, characterization and antiradical activity of a novel oligosaccharide derived from flaxseed gum, Food Chem. 230 (2017) 135-144. https://doi.org/10.1016/j.foodchem.2017.03.029.

[33]

X. Chen, R. Zhang, Y. Li, et al., Degradation of polysaccharides from Sargassum fusiforme using UV/H2O2 and its effects on structural characteristics, Carbohydr. Polym. 230 (2020) 115647. https://doi.org/10.1016/j.carbpol.2019.115647.

[34]
J.T. Smoot, A.V. Demchenko, Chapter 5 Oligosaccharide Synthesis: from Conventional Methods to Modern Expeditious Strategies, Advances in Carbohydrate Chemistry and Biochemistry, Academic Press, 2009, pp. 161-250.
[35]

B. Zhu, K. Li, W. Wang, et al., Preparation of trisaccharides from alginate by a novel alginate lyase Alg7A from marine bacterium Vibrio sp. W13, Int. J. Biol. Macromol. 139 (2019) 879-885. https://doi.org/10.1016/j.ijbiomac.2019.08.020.

[36]

Y.H. Zhang, X.N. Song, Y. Lin, et al., Antioxidant capacity and prebiotic effects of Gracilaria neoagaro oligosaccharides prepared by agarase hydrolysis, Int. J. Biol. Macromol. 137 (2019) 177-186. https://doi.org/10.1016/j.ijbiomac.2019.06.207.

[37]

S. Sun, X. Wei, C. You, The construction of an in vitro synthetic enzymatic biosystem that facilitates laminaribiose biosynthesis from maltodextrin and glucose, Biotechnol. J. 14 (2019) 1800493. http://dx.doi.org/10.1002/biot.201800493.

[38]

A.F. Hifney, M.A. Fawzy, K.M. Abdel-Gawad, et al., Upgrading the antioxidant properties of fucoidan and alginate from Cystoseira trinodis by fungal fermentation or enzymatic pretreatment of the seaweed biomass, Food Chem. 269 (2018) 387-395. https://doi.org/10.1016/j.foodchem.2018.07.026.

[39]

M. Sun, C. Sun, T. Li, et al., Characterization of a novel bifunctional mannuronan C-5 epimerase and alginate lyase from Pseudomonas mendocina. sp. DICP-70, Int. J. Biol. Macromol. 150 (2020) 662-670. https://doi.org/10.1016/j.ijbiomac.2020.02.126.

[40]

P.S. Saravana, Y.N. Cho, M.P. Patil, et al., Hydrothermal degradation of seaweed polysaccharide: characterization and biological activities, Food Chem. 268 (2018) 179-187. https://doi.org/10.1016/j.foodchem.2018.06.077.

[41]

V.E. Suprunchuk, Low-molecular-weight fucoidan: chemical modification, synthesis of its oligomeric fragments and mimetics, Carbohydr. Res. 485 (2019) 107806. https://doi.org/10.1016/j.carres.2019.107806.

[42]

T. Bouanati, E. Colson, S. Moins, et al., Microwave-assisted depolymerization of carrageenans from Kappaphycus alvarezii and Eucheuma spinosum: controlled and green production of oligosaccharides from the algae biomass, Algal Res. 51 (2020) 102054. https://doi.org/10.1016/j.algal.2020.102054.

[43]

A.T. Quitain, T. Kai, M. Sasaki, et al., Microwave-hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida, Ind. Eng. Chem. Res. 52 (2013) 7940-7946. http://dx.doi.org/10.1021/ie400527b.

[44]

J.H. Lee, H.H. Kim, J.Y. Ko, et al., Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system, Carbohydr. Polym. 153 (2016) 512-517. https://doi.org/10.1016/j.carbpol.2016.07.122.

[45]

A. Mena-García, A.I. Ruiz-Matute, A.C. Soria, et al., Green techniques for extraction of bioactive carbohydrates, Trac-Trends Anal. Chem. 119 (2019). http://dx.doi.org/10.1016/j.trac.2019.07.023.

[46]

X. Yu, C. Zhou, H. Yang, et al., Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis, Carbohydr. Polym. 117 (2015) 650-656. http://dx.doi.org/10.1016/j.carbpol.2014.09.086.

[47]

S.H. Zha, Q.S. Zhao, B. Zhao, et al., Molecular weight controllable degradation of Laminaria japonica polysaccharides and its antioxidant properties, J. Ocean Univ. China 15 (2016) 637-642. http://dx.doi.org/10.1007/s11802-016-2943-7.

[48]

J.M. Wasikiewicz, F. Yoshii, N. Nagasawa, et al., Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods, Radiat. Phys. Chem. 73 (2005) 287-295. https://doi.org/10.1016/j.radphyschem.2004.09.021.

[49]

R. Ramani, C. Ranganathaiah, Degradation of acrylonitrile-butadiene-styrene and polycarbonate by UV irradiation, Polym. Degrad. Stab. 69 (2000) 347-354. https://doi.org/10.1016/S0141-3910(00)00081-1.

[50]

J.I. Choi, S.G. Lee, S.J. Han, et al., Effect of gamma irradiation on the structure of fucoidan, Radiat. Phys. Chem. 100 (2014) 54-58. https://doi.org/10.1016/j.radphyschem.2014.03.018.

[51]

G.K. Devi, K. Manivannan, G. Thirumaran, et al., In vitro antioxidant activities of selected seaweeds from Southeast coast of India, Asian Pac. J. Trop. Med. 4 (2011) 205-211. https://doi.org/10.1016/S1995-7645(11)60070-9.

[52]

D. Rico, A.B.M. Diana, I. Milton-Laskibar, et al., Characterization and In vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome, J. Funct. Food. 46 (2018) 185-194. https://doi.org/10.1016/j.jff.2018.05.010.

[53]

J. Wan, J. Zhang, D. Chen, et al., Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs, Anim. Feed Sci. Technol. 234 (2017) 118-127. https://doi.org/10.1016/j.anifeedsci.2017.09.006.

[54]

W. Li, N. Jiang, B. Li, et al., Antioxidant activity of purified ulvan in hyperlipidemic mice, Int. J. Biol. Macromol. 113 (2018) 971-975. https://doi.org/10.1016/j.ijbiomac.2018.02.104.

[55]

E. Gómez-Ordóñez, A. Jiménez-Escrig, P. Rupérez, Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus, Bioactive Carbohydrates and Dietary Fibre 3 (2014) 29-40. https://doi.org/10.1016/j.bcdf.2014.01.002.

[56]

G. Das, S. Paramithiotis, B. Sundaram Sivamaruthi, et al., Traditional fermented foods with anti-aging effect: a concentric review, Food Res. Int. 134 (2020) 109269. https://doi.org/10.1016/j.foodres.2020.109269.

[57]

R. Bai, C. Yao, Z. Zhong, et al., Discovery of natural anti-inflammatory alkaloids: potential leads for the drug discovery for the treatment of inflammation, Eur. J. Med. Chem. 213 (2021) 113165. https://doi.org/10.1016/j.ejmech.2021.113165.

[58]

J.K. Ryu, S.J. Kim, S.H. Rah, et al., Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4- MD2 for efficient LPS recognition and transfer, Immunity 46 (2017) 38-50. https://doi.org/10.1016/j.immuni.2016.11.007.

[59]

J. Guo, S. Han, X. Lu, et al., κ-Carrageenan hexamer have significant antiinflammatory activity and protect RAW264.7 Macrophages by inhibiting CD14, J. Funct. Food. 57 (2019) 335-344. https://doi.org/10.1016/j.jff.2019.04.029.

[60]

L. Ai, Y.C. Chung, S.Y. Lin, et al., Carrageenan polysaccharides and oligosaccharides with distinct immunomodulatory activities in murine microglia BV-2 cells, Int. J. Biol. Macromol. 120 (2018) 633-640. https://doi.org/10.1016/j.ijbiomac.2018.08.151.

[61]

Y. Wang, L. Li, C. Ye, et al., Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice, Appl. Microbiol. Biotechnol. 104 (2020) 3541-3554. http://dx.doi.org/10.1007/s00253-020-10449-7.

[62]

D. Bi, R. Zhou, N. Cai, et al., Alginate enhances Toll-like receptor 4-mediated phagocytosis by murine RAW264.7 macrophages, Int. J. Biol. Macromol. 105 (2017) 1446-1454. https://doi.org/10.1016/j.ijbiomac.2017.07.129.

[63]

S. Kittibunchakul, T. Maischberger, K.J. Domig, et al., Fermentability of a novel galacto-oligosaccharide mixture by Lactobacillus spp. and Bifidobacterium spp, Molecules 23 (2018) 3352. https://doi.org/10.3390/molecules23123352.

[64]

X. Zhang, Y. Liu, X.Q. Chen, et al., Catabolism of Saccharina japonica polysaccharides and oligosaccharides by human fecal microbiota, LWTFood Science and Technol. 130 (2020) 109635. https://doi.org/10.1016/j.lwt.2020.109635.

[65]

M. Li, G. Li, L. Zhu, et al., Isolation and characterization of an agarooligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals, PLoS One 9 (2014) e91106. http://dx.doi.org/10.1371/journal.pone.0091106.

[66]

M. Li, G. Li, Q. Shang, et al., In vitro fermentation of alginate and its derivatives by human gut microbiota, Anaerobe 39 (2016) 19-25. https://doi.org/10.1016/j.anaerobe.2016.02.003.

[67]

K Sakena, S. Peerakietkhajorn, B. Siringoringo, et al., Oligosaccharides from Gracilaria fisheri ameliorate gastrointestinal dysmotility and gut dysbiosis in colitis mice, J. Funct. Food. 71 (2020) 104021. https://doi.org/10.1016/j.jff.2020.104021.

[68]

L. Chen, G. Huang, The antiviral activity of polysaccharides and their derivatives, Int. J. Biol. Macromol. 115 (2018) 77-82. https://doi.org/10.1016/j.ijbiomac.2018.04.056.

[69]

Q. Shi, A. Wang, Z. Lu, et al., Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds, Carbohydr. Res. 453-454 (2017) 1-9. https://doi.org/10.1016/j.carres.2017.10.020.

[70]

W. Wang, P. Zhang, C. Hao, et al., In vitro inhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus, Antiviral Res. 92 (2011) 237- 246. https://doi.org/10.1016/j.antiviral.2011.08.010.

[71]

W. Wang, P. Zhang, G.L. Yu, et al., Preparation and anti-influenza A virus activity of κ-carrageenan oligosaccharide and its sulphated derivatives, Food Chem. 133 (2012) 880-888. https://doi.org/10.1016/j.foodchem.2012.01.108.

[72]

X.X. Yang, Z.D. Sun, W.Y. Wang, et al., Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish, Sci. Total Environ. 643 (2018) 559-568. http://dx.doi.org/10.1016/j.scitotenv.2018.06.213.

[73]

S. Wang, W. Wang, L. Hou, et al., A sulfated glucuronorhamnan from the green seaweed Monostroma nitidum: characteristics of its structure and antiviral activity, Carbohydr. Polym. 227 (2020) 115280. https://doi.org/10.1016/j.carbpol.2019.115280.

[74]

L. Guariguata, D.R. Whiting, I. Hambleton, et al., Global estimates of diabetes prevalence for 2013 and projections for 2035, Diabetes Res. Clin. Pract. 103 (2014) 137-149. https://doi.org/10.1016/j.diabres.2013.11.002.

[75]

M. Rahimi, S. Sajadimajd, Z. Mahdian, et al., Characterization and antidiabetic effects of the oligosaccharide fraction isolated from Rosa canina in STZ-Induced diabetic rats, Carbohydr. Res. 489 (2020) 107927. https://doi.org/10.1016/j.carres.2020.107927.

[76]

C.F. Yang, S.S. Lai, Y.H. Chen, et al., Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota, Food Chem. Toxicol. 131 (2019) 110562. https://doi.org/10.1016/j.fct.2019.110562.

[77]

X. Wang, Z. Yang, X. Xu, et al., Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice, Carbohydr. Polym. 240 (2020) 116261. https://doi.org/10.1016/j.carbpol.2020.116261.

[78]

S.H. Hong, J.T. Kim, S.C. Mun, et al., Influence of spherical particles and interfacial stress distribution on viscous flow behavior of Ti-Cu-Ni-Zr-Sn bulk metallic glass composites, Intermetallics 91 (2017) 90-94. https://doi.org/10.1016/j.intermet.2017.08.016.

[79]

F. Lin, D. Yang, Y. Huang, et al., The potential of neoagaro-oligosaccharides as a treatment of Type II diabetes in mice, Mar. Drugs 17 (2019). http://dx.doi.org/10.3390/md17100541.

[80]

C. Corradini, C. Lantano, A. Cavazza, Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest, Anal. Bioanal. Chem. 405 (2013) 4591-4605. http://dx.doi.org/10.1007/s00216-013-6731-6.

[81]

M.F. de Jesus Raposo, A.M.M.B. de Morais, R.M.S.C. de Morais, Emergent sources of prebiotics: seaweeds and microalgae, Mar. Drugs 14 (2016) 27. http://dx.doi.org/10.3390/md14020027.

[82]

S. Mohamed, S.N. Hashim, H.A. Rahman, Seaweeds: a sustainable functional food for complementary and alternative therapy, Trends Food Sci. Technol. 23 (2012) 83-96. https://doi.org/10.1016/j.tifs.2011.09.001.

[83]

P. Ramnani, R. Chitarrari, K. Tuohy, et al., In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds, Anaerobe 18 (2012) 1-6. https://doi.org/10.1016/j.anaerobe.2011.08.003.

[84]

S. Charoensiddhi, M.A. Conlon, C.M.M. Franco, et al., The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies, Trends Food Sci. Technol. 70 (2017) 20-33. https://doi.org/10.1016/j.tifs.2017.10.002.

[85]

X.T. Xie, K.L. Cheong, Recent advances in marine algae oligosaccharides: structure, analysis, and potential prebiotic activities, Crit. Rev. Food Sci. Nutr. (2021) 1-16. http://dx.doi.org/10.1080/10408398.2021.1916736.

[86]

M. Raman, M. Doble, κ-Carrageenan from marine red algae, Kappaphycus alvarezii: a functional food to prevent colon carcinogenesis, J. Funct. Food. 15 (2015) 354-364. https://doi.org/10.1016/j.jff.2015.03.037.

[87]

J.R. Paxman, J.C. Richardson, P.W. Dettmar, et al., Daily ingestion of alginate reduces energy intake in free-living subjects, Appetite 51 (2008) 713-719. https://doi.org/10.1016/j.appet.2008.06.013.

[88]

R. Kováčová, J. Štětina, L. Čurda, Influence of processing and κ-carrageenan on properties of whipping cream, J. Food Eng. 99 (2010) 471-478. https://doi.org/10.1016/j.jfoodeng.2010.02.010.

[89]

C. Soukoulis, I. Chandrinos, C. Tzia, Study of the functionality of selected hydrocolloids and their blends with κ-carrageenan on storage quality of vanilla ice cream, LWT-Food Science and Technol. 41 (2008) 1816-1827. https://doi.org/10.1016/j.lwt.2007.12.009.

[90]

M. Koenighofer, T. Lion, A. Bodenteich, et al., Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials, Multidiplinary respiratory medicine 9 (2014). http://dx.doi.org/10.4081/mrm.2014.392.

[91]

C. Graf, A. Bernkop-Schnurch, A. Egyed, et al., Development of a nasal spray containing xylometazoline hydrochloride and iota-carrageenan for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis, International Journal of General Medicine 11 (2018) 275-283. http://dx.doi. org/10.2147/ijgm.S167123.

[92]

K.I. Draget, C. Taylor, Chemical, physical and biological properties of alginates and their biomedical implications, Food Hydrocolloid 25 (2011) 251-256. https://doi.org/10.1016/j.foodhyd.2009.10.007.

[93]

M.F. Pritchard, L.C. Powell, G.E. Menzies, et al., A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease, Mol. Pharm. 13 (2016) 863-872. http://dx.doi.org/10.1021/acs.molpharmaceut.5b00794.

[94]

J.L. Roberts, S. Khan, C. Emanuel, et al., An in vitro study of alginate oligomer therapies on oral biofilms, J. Dent. 41 (2013) 892-899. https://doi.org/10.1016/j.jdent.2013.07.011.

[95]

H.L. Tsai, C.J. Tai, C.W. Huang, et al., Efficacy of low-molecularweight fucoidan as a supplemental therapy in metastatic colorectal cancer patients: a double-blind randomized controlled trial, Mar. Drugs 15 (2017). http://dx.doi.org/10.3390/md15040122.

[96]

L.V. Abad, C.T. Aranilla, L.S. Relleve, et al., Emerging applications of radiation-modified carrageenans, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 336 (2014) 167-172. https://doi.org/10.1016/j.nimb.2014.07.005.

[97]

H. Afjoul, A. Shamloo, A. Kamali, Freeze-gelled alginate/gelatin scaffolds for wound healing applications: an in vitro, in vivo study, Mater. Sci. Eng. C 113 (2020) 110957. https://doi.org/10.1016/j.msec.2020.110957.

[98]

Y. Yamasaki, T. Yokose, T. Nishikawa, et al., Effects of alginate oligosaccharide mixtures on the growth and fatty acid composition of the green alga Chlamydomonas reinhardtii, J. Biosci. Bioeng. 113 (2012) 112- 116. https://doi.org/10.1016/j.jbiosc.2011.09.009.

[99]

B. Zhang, C.D. Fang, G.J. Hao, et al., Effect of kappa-carrageenan oligosaccharides on myofibrillar protein oxidation in peeled shrimp (Litopenaeus vannamei) during long-term frozen storage, Food Chem. 245 (2018) 254-261. https://doi.org/10.1016/j.foodchem.2017.10.112.

[100]

B. Zhang, H.J. Cao, W.Y. Wei, et al., Influence of temperature fluctuations on growth and recrystallization of ice crystals in frozen peeled shrimp (Litopenaeus vannamei) pre-soaked with carrageenan oligosaccharide and xylooligosaccharide, Food Chem. 306 (2020) 125641. https://doi.org/10.1016/j.foodchem.2019.125641.

[101]

S.K. Bose, P. Howlader, X. Jia, et al., Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via abscisic acid signaling in strawberry, Food Chem. 283 (2019) 665-674. https://doi.org/10.1016/j.foodchem.2019.01.060.

[102]

J. Liu, J.F. Kennedy, X. Zhang, et al., Preparation of alginate oligosaccharide and its effects on decay control and quality maintenance of harvested kiwifruit, Carbohydr. Polym. 242 (2020) 116462. https://doi.org/10.1016/j.carbpol.2020.116462.

[103]

N.A. Yahya, N. Attan, R.A. Wahab, An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds, Food Bioprod. Process. 112 (2018) 69-85. https://doi.org/10.1016/j.fbp.2018.09.002.

[104]
G. Bedoux, K. Hardouin, A.S. Burlot, et al., Chapter twelve-bioactive components from seaweeds: cosmetic applications and future development, in: N. Bourgougnon (Ed.), Advances in Botanical Research, Academic Press, 2014, pp. 345-378.
[105]

B. Capitanio, J.L. Sinagra, R.B. Weller, et al., Randomized controlled study of a cosmetic treatment for mild acne, Clin. Exp. Dermatol. 37 (2012) 346- 349. http://dx.doi.org/10.1111/j.1365-2230.2011.04317.x.

[106]

K.A. Johnson, N. Muzzin, S. Toufanian, et al., Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing, Acta Biomater. (2020). https://doi.org/10.1016/j.actbio.2020.06.006.

[107]

Y. Zhao, Z. Chen, T. Wu, Cryogelation of alginate improved the freeze-thaw stability of oil-in-water emulsions, Carbohydr. Polym. 198 (2018) 26-33. https://doi.org/10.1016/j.carbpol.2018.06.013.

[108]

Q. Chen, L. Kou, F. Wang, et al., Size-dependent whitening activity of enzyme-degraded fucoidan from Laminaria japonica, Carbohydr. Polym. 225 (2019) 115211. https://doi.org/10.1016/j.carbpol.2019.115211.

[109]

S. Jochen, H. Dominik, N.J. Wendel, et al., Bacterial glycosyltransferases: challenges and opportunities of a highly diverse enzyme class toward tailoring natural products, Frontiers in Microbiology 7 (2016). http://dx.doi.org/10.3389/fmicb.2016.00182.

[110]

Z.L. Han, M. Yang, X.D. Fu, et al., Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis, Mar. Drugs 17 (2019). http://dx.doi.org/10.3390/md17030173.

[111]

M. Jin, H. Liu, Y. Hou, et al., Preparation, characterization and alcoholic liver injury protective effects of algal oligosaccharides from Gracilaria lemaneiformis, Food Res. Int. 100 (2017) 186-195. https://doi.org/10.1016/j.foodres.2017.08.032.

[112]

Y. Sun, X. Cui, M. Duan, et al., In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells, J. Funct. Food. 59 (2019) 80-91. https://doi.org/10.1016/j.jff.2019.05.036.

[113]

D.B. Figueiredo, J.C.C. Dallagnol, M.M. de Carvalho, et al., Monitoring of κ-carrageenan depolymerization by capillary electrophoresis and semisynthesis of oligosaccharide alditols, Carbohydr. Polym. 208 (2019) 152-160. https://doi.org/10.1016/j.carbpol.2018.12.054.

[114]

S.Y. Li, Z.P. Wang, L.N. Wang, et al., Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica, Bioresour. Technol. 281 (2019) 84-89. https://doi.org/10.1016/j.biortech.2019.02.056.

[115]

H.L.A. El-Mohdy, Radiation-induced degradation of sodium alginate and its plant growth promotion effect, Arab. J. Chem. 10 (2017) S431-S438. https://doi.org/10.1016/j.arabjc.2012.10.003.

[116]

T. Hu, C. Li, X. Zhao, et al., Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method, Carbohydr. Res. 373 (2013) 53-58. https://doi.org/10.1016/j.carres.2013.03.014.

[117]

M. Sun, C. Sun, H. Xie, et al., A simple method to calculate the degree of polymerization of alginate oligosaccharides and low molecular weight alginates, Carbohydr. Res. 486 (2019) 107856. https://doi.org/10.1016/j.carres.2019.107856.

[118]

E.A. Zúñiga, B. Matsuhiro, E. Mejías, Preparation of a low-molecular weight fraction by free radical depolymerization of the sulfated galactan from Schizymenia binderi (Gigartinales, Rhodophyta) and its anticoagulant activity, Carbohydr. Polym. 66 (2006) 208-215. https://doi.org/10.1016/j.carbpol.2006.03.007.

[119]

W. Sumiyoshi, N. Miyanishi, S.I. Nakakita, et al., An alternative strategy for structural glucanomics using β-gluco-oligosaccharides from the brown algae Ecklonia stolonifera as models, Bioactive Carbohydrates and Dietary Fibre 5 (2015) 137-145. https://doi.org/10.1016/j.bcdf.2015.03.002.

[120]

S. Ermakova, R. Men’Shova, O. Vishchuk, et al., Water-soluble polysaccharides from the brown alga Eisenia bicyclis: structural characteristics and antitumor activity, Algal Res. 2 (2013) 51-58. https://doi.org/10.1016/j.algal.2012.10.002.

[121]

K.H. Kim, Y.W. Kim, H.B. Kim, et al., Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica, Biotechnol. Lett. 28 (2006) 439-446. http://dx.doi.org/10.1007/s10529-005-6177-9.

[122]

H. Li, W. Mao, Y. Chen, et al., Sequence analysis of the sulfated rhamnooligosaccharides derived from a sulfated rhamnan, Carbohydr. Polym. 90 (2012) 1299-1304. https://doi.org/10.1016/j.carbpol.2012.06.076.

[123]

D. Wu, Y. Chen, X. Wan, et al., Structural characterization and hypoglycemic effect of green alga Ulva lactuca oligosaccharide by regulating microRNAs in Caenorhabditis elegans, Algal Res. 51 (2020) 102083. https://doi.org/10.1016/j.algal.2020.102083.

[124]

B. Xiong, M. Liu, C. Zhang, et al., Alginate oligosaccharides enhance small intestine cell integrity and migration ability, Life Sci. 258 (2020) 118085. https://doi.org/10.1016/j.lfs.2020.118085.

[125]

J. Zhao, Y. Han, Z. Wang, et al., Alginate oligosaccharide protects endothelial cells against oxidative stress injury via integrin-α/ FAK/PI3K signaling, Biotechnol. Lett. 42(12) (2020) 2749-2758. http://dx.doi.org/10.1007/s10529-020-03010-z.

[126]

L. Robert, J. Molinari, V. Ravelojaona, et al., Age- and passage-dependent upregulation of fibroblast elastase-type endopeptidase activity. role of advanced glycation endproducts, inhibition by fucose- and rhamnoserich oligosaccharides, Arch. Gerontol. Geriatr. 50 (2010) 327-331. https://doi.org/10.1016/j.archger.2009.05.006.

[127]

J.T. Kidgell, C.R.K. Glasson, M. Magnusson, et al., The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage, Int. J. Biol. Macromol. 150 (2020) 839-848. https://doi.org/10.1016/j.ijbiomac.2020.02.071.

Food Science and Human Wellness
Pages 359-370
Cite this article:
Zheng L, Liu Y, Tang S, et al. Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. Food Science and Human Wellness, 2023, 12(2): 359-370. https://doi.org/10.1016/j.fshw.2022.07.038

1020

Views

89

Downloads

27

Crossref

27

Web of Science

31

Scopus

0

CSCD

Altmetrics

Received: 31 May 2021
Revised: 04 July 2021
Accepted: 20 July 2022
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return