AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (823.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Short Communication | Open Access

Porphyra haitanensis polysaccharide (PH) attenuates cell hyperplasia via remodeling the cross-talk between Hippo/YAP and mTOR pathways

Chong WangaWanglei LinaZhihua SunaYiming SunbYanbo WangaLinglin Fua( )
Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
The Affiliated High School to Hangzhou Normal University, Hangzhou 310030, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Porphyra polysaccharide is a special kind of nutrient showing multiple physiological functions including regulating cell proliferation, but the detailed mechanisms are not fully revealed, impairing its further development and applications. This work was to purify and characterize the Porphyra haitanensis polysaccharide (PH), investigate its physiological function, and demonstrate the underlying mechanisms. The purified PH was first characterized by Fourier-transform infrared spectroscopy. Then an intestinal epithelial cell model was established, in which PH significantly suppressed cell hyperplasia. Specifically, PH activated the Hippo/YAP pathway, which subsequently activated mTOR pathway, however mTOR activated Hippo in the absence of PH. Moreover, both the inhibition of Hippo by YAP1 knock-down and the suppression of mTOR by rapamycin impaired PH function. These results indicated that PH attenuated hyperplasia activity by remodeling the cross-talk between Hippo/YAP and mTOR pathways, which revealed potential targets and approaches for treating hyperplasia-related diseases and provided novel ways to utilize P. haitanensis as well as other related functional foods.

References

[1]

J. Cao, J. Wang, S. Wang, et al., Porphyra species: a mini-review of its pharmacological and nutritional properties, J. Med. Food. 19 (2016) 111-119. http://dx.doi.org/10.1089/jmf.2015.3426.

[2]

K.L. Venkatraman, A. Mehta, Health Benefits and Pharmacological Effects of Porphyra Species, Plant Foods Hum. Nutr. 74 (2019) 10-17. http://dx.doi.org/10.1007/s11130-018-0707-9.

[3]

T.T. Zhao, Q.B. Zhang, H.M. Qi, et al., Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight, International Journal of Biological Macromolecules. 38 (2006) 45-50. http://dx.doi.org/10.1016/j.ijbiomac.2005.12.018.

[4]

K. Niwa, A. Kobiyama, Simple molecular discrimination of cultivated Porphyra species (Porphyra yezoensis and Porphyra tenera) and related wild species (Bangiales, Rhodophyta), Phycol. Res. 57 (2010) 299-303. http://dx.doi.org/10.1111/j.1440-1835.2009.00549.x.

[5]

K. Kazłowska, T. Hsu, C.C. Hou, et al., Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata, J. Ethnopharmacol. 128 (2010) 123-130. http://dx.doi.org/10.1016/j.jep.2009.12.037.

[6]

Q. Zhang, L. Ning, X. Liu, et al., The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity, Carbohydr. Res. 339 (2004) 105-111. http://dx.doi.org/10.1016/j.carres.2003.09.015.

[7]

C. Zhou, X. Yu, Y. Zhang, et al., Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea, Carbohydr. Polym. 87 (2012) 2046-2051. http://dx.doi.org/10.1016/j.carbpol.2011.10.026.

[8]

S.J. Park, J. Ryu, I.H. Kim, et al., Activation of the mTOR signaling pathway in breast cancer MCF-7 cells by a peptide derived from Porphyra yezoensis, Oncol. Rep. 33 (2015) 19-24. http://dx.doi.org/10.3892/or.2014.3557.

[9]

L. Fu, Y. Qian, C. Wang, et al., Two polysaccharides from Porphyra modulate immune homeostasis by NF-κB-dependent immunocyte differentiation, Food & Function. 10 (2019) 2083-2093. http://dx.doi.org/10.1039/c9fo00023b.

[10]

P.M. Wierzbicki, R. Agnieszka, The Hippo pathway in colorectal cancer, Folia Histochem Cytobiol. 53 (2015) 105-119. http://dx.doi.org/10.5603/FHC.a2015.0015.

[11]

F. Maria Giovanna, L. Eric, Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1, Oncotarget. 4 (2013) 1948-1962. http://dx.doi.org/10.18632/oncotarget.1310.

[12]

Y. Zhang, H. Zhang, B. Zhao, Hippo signaling in the immune system, Trends Biochem. Sci. 43 (2018) 77-80. http://dx.doi.org/10.1016/j.tibs.2017.11.009.

[13]

K.F. Harvey, X.M. Zhang, D.M. Thomas, The Hippo pathway and human cancer, Nat. Rev. Cancer 13 (2013) 246-257. http://dx.doi.org/10.1038/nrc3458.

[14]

A.P. Jiménez, A. Traum, T. Boettger, et al., The tumor suppressor RASSF1A induces the YAP1 target gene ANKRD1 that is epigenetically inactivated in human cancers and inhibits tumor growth, Oncotarget. 8 (2017) 88437-88452. http://dx.doi.org/10.18632/oncotarget.18177.

[15]

D.D. Sarbassov, S.M. Ali, D.M. Sabatini, Growing roles for the mTOR pathway, Curr Opin Cell Biol. 17 (2005) 596-603. http://dx.doi.org/10.1016/j.ceb.2005.09.009.

[16]

D.M. Sabatini, mTOR and cancer: insights into a complex relationship, Nature Reviews Cancer. 6 (2006) 729. http://dx.doi.org/10.1038/nrc1974.

[17]

R.M. Bostick, Colon cancer: a review of the epidemiology, Epidemiol. Rev. 15 (1993) 499. http://dx.doi.org/10.1093/oxfordjournals.epirev.a036132.

[18]

B.J. Chen, M.J. Shi, S. Cui, et al., Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation, Int J Biol Macromol. 92 (2016) 715-722. http://dx.doi.org/10.1016/j.ijbiomac.2016.07.082.

[19]

R. Shields, W. Burnett, Determination of protein-bound carbohydrate in serum by a modified anthrone method, Anal. Chem. 32 (1960) 885-886. http://dx.doi.org/10.1021/ac60163a053.

[20]

M.A. Tabatabai, A rapid method for determination of sulfate in water samples, Environ. Lett. 7 (1974) 237-243. 10.1080/00139307409437403.

[21]

M. Kosakai, Z. Yosizawa, A partial modification of the carbazole method of Bitter and Muir for quantitation of hexuronic acids, Anal Biochem. 93 (1979) 295-298. http://dx.doi.org/10.1016/s0003-2697(79)80154-2.

[22]

F. Rodríguez-Vico, M. Martínez-Cayuela, E. García-Peregrín, et al., A procedure for eliminating interferences in the lowry method of protein determination, Anal Biochem. 183 (1989) 275-278. http://dx.doi.org/10.1016/0003-2697(89)90479-X.

[23]

Y.T. Li, B.J. Chen, W.D. Wu, et al., Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme, Int J Biol Macromol. 118 (2018) 1550-1557. http://dx.doi.org/10.1016/j.ijbiomac.2018.06.196.

[24]

J. Xu, L.L. Xu, Q.W. Zhou, et al., Isolation, purification, and antioxidant activities of degraded polysaccharides from Enteromorpha prolifera, Int J Biol Macromol. 81 (2015) 1026-1030. http://dx.doi.org/10.1016/j.ijbiomac.2015.09.055.

[25]

Q. Wei, M. He, M. Chen, et al., Icariin stimulates osteogenic differentiation of rat bone marrow stromal stem cells by increasing TAZ expression, Biomed. Pharmacother. 91 (2017) 581-589. http://dx.doi.org/10.1016/j.biopha.2017.04.019.

[26]

R.J. Fido, A.S. Tatham, P.R. Shewry, Western blotting analysis, Methods Mol Biol. 49 (1995) 423-437. http://dx.doi.org/10.1385/0-89603-321-X:423.

[27]

K. Harmanmeet, A. Munish, K. Sandeep, et al., Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery, Int J Biol Macromol. 50 (2012) 833-839. http://dx.doi.org/10.1016/j.ijbiomac.2011.11.017.

[28]

F. Rossi, M. Santoro, T. Casalini, et al., Characterization and Degradation Behavior of Agar–Carbomer Based Hydrogels for Drug Delivery Applications: Solute Effect, International Journal of Molecular Sciences. 12 (2011) 3394-3408. http://dx.doi.org/10.3390/ijms12063394.

[29]

E. Wiercigroch, E. Szafraniec, K. Czamara, et al., Raman and infrared spectroscopy of carbohydrates: a review, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 185 (2017). http://dx.doi.org/10.1016/j.saa.2017.05.045.

[30]

L.J. Wang, S.,J. Shi, Z.Y. Guo, et al., Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells, PLoS ONE. 8 (2013) e65539. http://dx.doi.org/10.1371/journal.pone.0065539.

[31]

L. Dulcie, H. King Ching, H. Yawei, et al., Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF, Cancer Res. 71 (2011) 2728. http://dx.doi.org/10.1158/0008-5472.CAN-10-2711.

[32]

M. Toshiro, H. Carsten Gram, G. Kun-Liang, The emerging roles of YAP and TAZ in cancer, Nat. Rev. Cancer. 15 (2015) 73-79. http://dx.doi.org/10.1038/nrc3876.

[33]

L. Bo, G. Shuohui, W. Feng, et al., Simultaneous targeting of EGFR and mTOR inhibits the growth of colorectal carcinoma cells, Oncol. Rep. 28 (2012) 15-20. http://dx.doi.org/10.3892/or.2012.1786.

[34]

Q.M. Liu, S.S. Xu, L. Li, et al., In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis, Carbohydr. Polym. 165 (2017) 189-196. http://dx.doi.org/10.1016/j.carbpol.2017.02.032.

[35]

D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell. 144 (2011) 646-674. http://dx.doi.org/10.1016/j.cell.2011.02.013.

[36]

C.E. Wu, M.H. Chen, C.N. Yeh, mTOR Inhibitors in Advanced Biliary Tract Cancers, Int J Mol Sci. 20 (2019) 500. http://dx.doi.org/10.3390/ijms20030500.

[37]

E.L. Yanik, K. Siddiqui, E.A. Engels, Sirolimus effects on cancer incidence after kidney transplantation: a meta-analysis, Cancer Med. 4 (2015) 1448-1459. http://dx.doi.org/10.1002/cam4.487.

[38]

P.S. Karia, J.R. Azzi, E.C. Heher, et al., Association of sirolimus use with risk for skin cancer in a mixed-organ cohort of solid-organ transplant recipients with a history of cancer, Jama Dermatology. 152 (2016) 533-540. http://dx.doi.org/10.1001/jamadermatol.2015.5548.

[39]

C. Alfred, B. John, Hippo-YAP and mTOR pathways collaborate to regulate organ size, Nat. Cell Biol. 14 (2012) 1244-1245. 10.1038/ncb2634.

[40]

A. Nicholas, C. Cheri, H. Brent, et al., Phosphorylation of the Hippo Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness, J Biol Chem. 290 (2015) 19387-19401. http://dx.doi.org/10.1074/jbc.M115.656587.

Food Science and Human Wellness
Pages 424-430
Cite this article:
Wang C, Lin W, Sun Z, et al. Porphyra haitanensis polysaccharide (PH) attenuates cell hyperplasia via remodeling the cross-talk between Hippo/YAP and mTOR pathways. Food Science and Human Wellness, 2023, 12(2): 424-430. https://doi.org/10.1016/j.fshw.2022.07.044

451

Views

31

Downloads

4

Crossref

1

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 22 June 2021
Revised: 15 July 2021
Accepted: 12 August 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return