AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ginger polysaccharide UGP1 suppressed human colon cancer growth via p53, Bax/Bcl-2, caspase-3 pathways and immunomodulation

Yanfang Qian1Chenying Shi1Chen Cheng1Dengwei LiaoJunping LiuGui-tang Chen( )
College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing 211198, China

1 Authors contributed to the work equally and should be regarded as co-first authors.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

In previous study, we got a purified ginger polysaccharide UGP1 and verified its significant antitumor activities on colon cancer HCT116 cells. In this article, we aimed to illustrate the underlying mechanism of UGP1 exerted antitumor activities on colon cancer by using in vitro cell models and in vivo animal models. The results demonstrated that UGP1 could induce S-phase cell cycle arrest, up-regulate the expression of Bax and p53, down-regulate the expression of Bcl-2, and activate the downstream protein caspase-9 and caspase-3, which was related to intrinsic apoptosis pathway on HCT116 cells. Moreover, UGP1 significantly stimulated RAW264.7 cell proliferation and secretion activity. Similarly, UGP1 inhibited tumor proliferation on tumor-bearing mice, increased the expression of p53 and the ratio of Bax/Bcl-2, enhanced the secretion of pro-inflammatory cytokines TNF-α, IL-2, IL-6 and decreased the secretion of pro-tumor cytokines TGF-β and bFGF in serum. In conclusion, it indicated that the UGP1 could suppress human colon cancer growth by inducing apoptosis via the regulation of p53, caspase-3, and Bax/Bcl-2 ratio-dependent pathway and regulating immune system activity. This investigation provided basic theoretical mechanism of ginger polysaccharide-exerted antitumor activities, and contributed to develop a possible functional food or adjuvant agent for prevention or treatment of colon cancer.

References

[1]

Y.J. Zhu, Y.C. Du, Y.D. Zhang, DHX33 promotes colon cancer development downstream of Wnt signaling, Gene 735 (2020) 144402. https://doi.org/10.1016/j.gene.2020.144402.

[2]

L. Ma, G.B. Xu, X. Tang, et al., Anti-cancer potential of polysaccharide extracted from hawthorn (Crataegus.) on human colon cancer cell line HCT116 via cell cycle arrest and apoptosis, J. Funct. Foods 64 (2020) 103677. https://doi.org/10.1016/j.jff.2019.103677.

[3]

H.M. Qi, Q.B. Zhang, T.T. Zhao, et al., Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro, Int. J. Biol. Macromol. 37(4) (2005) 195-199. https://doi.org/10.1016/j.ijbiomac.2005.10.008.

[4]

L.Q. Sun, L. Wang, Y. Zhou, Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum, Carbohydr. Polym. 87(2) (2012) 1206-1210. https://doi.org/10.1016/j.carbpol.2011.08.097.

[5]

Y. Yu, M. Shen, Q. Song, et al., Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review, Carbohydr. Polym. 183 (2018) 91-101. https://doi.org/10.1016/j.carbpol.2017.12.009.

[6]

L. Ma, G.B. Xu, X. Tang, et al., Anti-cancer potential of polysaccharide extracted from hawthorn (Crataegus.) on human colon cancer cell line HCT116 via cell cycle arrest and apoptosis, J. Funct. Foods. 64(1) (2020) 103677. https://doi.org/10.1016/j.jff.2019.103677.

[7]

K. Zhang, X. Zhou, J. Wang, et al., Dendrobium officinale polysaccharide triggers mitochondrial disorder to induce colon cancer cell death via ROS-AMPK-autophagy pathway, Carbohydr. Polym. 264(7) (2021) 118018. https://doi.org/10.1016/j.carbpol.2021.118018.

[8]

S. Prasad, A.K. Tyagi, Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer, Gastroent. Res. Pract. 2015 (2015) 142979. https://doi.org/10.1155/2015/142979.

[9]

N. Zhang, M. Gao, Z. Wang, et al., Curcumin reverses doxorubicin resistance in colon cancer cells at the metabolic level, J. Pharm. Biomed. Anal. 201(7) (2021) 114129. https://doi.org/10.1016/j.jpba.2021.114129.

[10]

M. Zhang, B. Xiao, H. Wang, et al., Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy, Mol. Ther. 24(10) (2016) 1783-1796. https://doi.org/10.1038/mt.2016.159.

[11]

Y. Wang, S.X. Wang, R.Z. Song, et al., Ginger polysaccharides induced cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells, Int. J. Biol. Macromol. 123 (2019) 81-90. https://doi.org/10.1016/j.ijbiomac.2018.10.169.

[12]

I. Chakraborty, I.K. Sen, S. Mondal, et al., Bioactive polysaccharides from natural sources: a review on the antitumor and immunomodulating activities, Biocatal. Agric. Biotechnol. 22 (2019) 101425. https://doi.org/10.1016/j.bcab.2019.101425.

[13]

X. Meng, H.B. Liang, L.X. Luo, Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities, Carbohydr. Res. 424 (2016) 30-41. https://doi.org/10.1016/j.carres.2016.02.008.

[14]

H.R. Park, D. Hwang, H. do Hong, et al., Antitumor and antimetastatic activities of pectic polysaccharides isolated from persimmon leaves mediated by enhanced natural killer cell activity, J. Funct. Foods 37 (2017) 460-466. https://doi.org/10.1016/j.jff.2017.08.027.

[15]

S.S. Zhang, S.P. Nie, D.F. Huang, et al., A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system, J. Agric. Food Chem. 62(7) (2014) 1581-1589. https://doi.org/10.1021/jf4053012.

[16]

W.Y. Li, J.L. Wang, H.P. Hu, et al., Functional polysaccharide lentinan suppresses human breast cancer growth via inducing autophagy and caspase-7-mediated apoptosis, J. Funct. Foods 45 (2018) 75-85. https://doi.org/10.1016/j.jff.2018.03.024.

[17]

J. Yu, R.L. Sun, Z.Q. Zhao, et al., Auricularia polytricha polysaccharides induce cell cycle arrest and apoptosis in human lung cancer A549 cells, Int. J. Biol. Macromol. 68 (2014) 67-71. https://doi.org/10.1016/j.ijbiomac.2014.04.018.

[18]

Y.W. Zhang, H.B. Zhao, Y.C. Di, et al., Antitumor activity of pinoresinol in vitro: inducing apoptosis and inhibiting HepG2 invasion, J. Funct. Foods 45 (2018) 206-214. https://doi.org/10.1016/j.jff.2018.04.009.

[19]

D.W. Liao, C. Cheng, J.P. Liu, et al., Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods, Int. J. Biol. Macromol. 152 (2020) 894-903. https://doi.org/10.1016/j.ijbiomac.2020.02.325.

[20]

T. Werner, S.J. Wagner, I. Martínez, et al., Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis, Gut. 60(3) (2011) 325-333. https://doi.org/10.1136/gut.2010.216929.

[21]

K. Nakamura, D. Arai, K. Fukuchi, Identification of the region required for the antiapoptotic function of the cyclin kinase inhibitor, p21, Arch. Biochem. Biophys. 431(11) (2004) 47-54. https://doi.org/10.1016/j.abb.2004.07.032.

[22]

C.Y. Wu, Z.H. Tang, L. Jiang, et al., PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway, Mol. Cell Biochem. 359(8) (2012) 347-358. https://doi.org/10.1007/s11010-011-1028-6.

[23]

G.H. Mao, Y. Ren, W.W. Feng, et al., Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa, Carbohydr. Polym. 134 (2015) 406-412. https://doi.org/10.1016/j.carbpol.2015.08.020.

[24]

T. Zhao, Y. Feng, J. Li, et al., Schisandra polysaccharide evokes immunomodulatory activity through TLR4-mediated activation of macrophages, Int. J. Biol. Macromol. 65 (2014) 33-40. https://doi.org/10.1016/j.ijbiomac.2014.01.018.

[25]

V. Golumba-Nagy, J. Kuehle, A.A. Hombach, et al., CD28-ζ CAR T cells resist TGF-β repression through IL-2 signaling, which can be mimicked by an engineered IL-7 autocrine loop, Mol. Ther. 26(9) (2018) 2218-2230. https://doi.org/10.1016/j.ymthe.2018.07.005.

[26]

N. Bandoh, T. Hayashi, M. Takahara, et al., VEGF and bFGF expression and microvessel density of maxillary sinus squamous cell carcinoma in relation to p53 status, spontaneous apoptosis and prognosis, Cancer Lett. 208(2) (2004) 215-225. https://doi.org/10.1016/j.canlet.2003.11.031.

[27]

G.M. Jose, G.M. Kurup, Sulfated polysaccharides from Padina tetrastromatica arrest cell cycle, prevent metastasis and downregulate angiogenic mediators in HeLa cells, Bioact. Carbohydr. Diet. Fibre 12(1) (2017) 7-13. https://doi.org/10.1016/j.bcdf.2017.10.001.

[28]

K.M. Debatin, Activation of apoptosis pathways by anticancer treatment, Toxicol. Lett. 112-113 (2000) 41-48. https://doi.org/10.1016/S0378-4274(99)00252-0.

[29]

I. Muscari, S. Adorisio, A.M. Liberati, et al., Bcl-xL overexpression decreases GILZ levels and inhibits glucocorticoid-induced activation of caspase-8 and caspase-3 in mouse thymocytes, J. Transl. Autoimmun. 3 (2020) 100035. https://doi.org/10.1016/j.jtauto.2020.100035.

[30]

E.M. Kim, C.H. Jung, J.Y. Song, et al., Pro-apoptotic Bax promotes mesenchymal-epithelial transition by binding to respiratory complex-I and antagonizing the malignant actions of pro-survival Bcl-2 proteins, Cancer Lett. 424 (2018) 127-135. https://doi.org/10.1016/j.canlet.2018.03.033.

[31]

Y. Sun, Q. Hui, R. Chen, et al., Apoptosis in human hepatoma HepG2 cells induced by the phenolics of Tetrastigma hemsleyanum leaves and their antitumor effects in H22 tumor-bearing mice, J. Funct. Foods 40 (2018)349-364. https://doi.org/10.1016/j.jff.2017.11.017.

[32]

W.J. Zhou, S. Wang, Z. Hu, et al., Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation, Biochem. Biophys. Res. Commun. 467(3) (2015) 562-569. https://doi.org/10.1016/j.bbrc.2015.09.145.

[33]

S. Yogosawa, K. Yoshida, Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis, Cancer Sci. 109(11) (2018) 3376-3382. https://doi.org/10.1111/cas.13792.

[34]

H. Moghtaderi, H. Sepehri, F. Attari, Combination of arabinogalactan and curcumin induces apoptosis in breast cancer cells in vitro and inhibits tumor growth via overexpression of p53 level in vivo, Biomed. Pharmacother. 88 (2017) 582-594. https://doi.org/10.1016/j.biopha.2017.01.072.

[35]

C.Q. Wu, H.N. Luo, W.J. Ma, et al., Polysaccharides isolated from Hedyotis diffusa inhibits the aggressive phenotypes of laryngeal squamous carcinoma cells via inhibition of Bcl-2, MMP-2, and μPA, Gene 637 (2017) 124-129. https://doi.org/10.1016/j.gene.2017.09.041.

[36]

C.J. Liu, J.Y. Lin, Anti-inflammatory and anti-apoptotic effects of strawberry and mulberry fruit polysaccharides on lipopolysaccharide-stimulated macrophages through modulating pro-/anti-inflammatory cytokines secretion and Bcl-2/Bak protein ratio, Food Chem. Toxicol. 50(9) (2012) 3032-3039. https://doi.org/10.1016/j.fct.2012.06.016.

[37]

Y. Luo, X.Y. Fu, R.Z. Ru, et al., CpG oligodeoxynucleotides induces apoptosis of human bladder cancer cells via caspase-3-Bax/Bcl-2-p53 axis, Arch. Med. Res. 51 (2020) 233-244. https://doi.org/10.1016/j.arcmed.2020.02.005.

[38]

X.D. Dong, J. Yu, Y.Y. Feng, et al., Alcohol-soluble polysaccharide from Castanea mollissima blume: preparation, characteristics and antitumor activity, J. Funct. Foods 63 (2019) 103563. https://doi.org/10.1016/j.jff.2019.103563.

[39]

S. Sun, K.J. Li, Z.F. Lei, et al., Immunomodulatory activity of polysaccharide from Helicteres angustifolia L. on 4T1 tumor-bearing mice, Biomed. Pharmacother. 101 (2018) 881-888. https://doi.org/10.1016/j.biopha.2018.03.029.

[40]

D. Cruceriu, O. Baldasici, O. Balacescu, et al., The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches, Cell Oncol. 43(1) (2020) 1-18. https://doi.org/10.1007/s13402-019-00489-1.

[41]

V.V. Pop, A. Seicean, I. Lupan, et al., IL-6 roles-Molecular pathway and clinical implication in pancreatic cancer-a systemic review, Immunol. Lett. 181 (2017) 45-50. https://doi.org/10.1016/j.imlet.2016.11.010.

[42]

K.K. Hoyer, H. Dooms, L. Barron, et al., Interleukin-2 in the development and control of inflammatory disease, Immunol. Rev. 226(1) (2008) 19-28. https://doi.org/10.1111/j.1600-065X.2008.00697.x.

[43]

F.R. Lello Santos, R.M.A. Moysés, F.L.M. Montenegro, et al., IL-1β, TNF-α, TGF-β, and bFGF expression in bone biopsies before and after parathyroidectomy, Kidney Int. 63(3) (2003) 899-907. https://doi.org/10.1046/j.1523-1755.2003.00835.x.

[44]

T. Biswas, X. Gu, J. Yang, et al., Attenuation of TGF-β signaling supports tumor progression of a mesenchymal-like mammary tumor cell line in a syngeneic murine model, Cancer Lett. 346(1) (2014) 129-138. https://doi.org/10.1016/j.canlet.2013.12.018.

[45]

D.V.F. Tauriello, E. Batlle, TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis, ESMO Open. 3 (2018). https://doi.org/10.1136/esmoopen-2018-EACR25.8.

Food Science and Human Wellness
Pages 467-476
Cite this article:
Qian Y, Shi C, Cheng C, et al. Ginger polysaccharide UGP1 suppressed human colon cancer growth via p53, Bax/Bcl-2, caspase-3 pathways and immunomodulation. Food Science and Human Wellness, 2023, 12(2): 467-476. https://doi.org/10.1016/j.fshw.2022.07.048

492

Views

62

Downloads

15

Crossref

14

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 12 August 2021
Revised: 14 September 2021
Accepted: 09 November 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return