AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

UPLC-Q-TOF/MS-based metabolomics reveals modulatory effects of Mesona chinensis Benth polysaccharide in liver injury mice induced by cyclophosphamide

Yuzhen HongMingyue ShenQiang YuYi ChenJianhua Xie( )
State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

The main purpose of this study was to investigate the improvement effect of Mesona chinensis Benth polysaccharide (MP) on cyclophosphamide (CTX) induced liver injury in mice. To explore metabolic profile of liver tissue and feces among normal group, CTX-induced group and MP management group based on metabolomics method by using UPLC-Q-TOF/MS. The results showed that MP could alleviate liver injury and promote the production of short chain fatty acids (SCFAs), with the best dose of 200 mg/kg·body weight (bw). The principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) scores plots of the liver and feces samples showed a clear separation among normal, model and high-dose of MP (MPH). There were 18 endogenous metabolites in liver and 29 endogenous metabolites in feces, which were mainly involved in 8 metabolic pathways: taurine and hypotaurine metabolism, phenylalanine metabolism, α-linolenic acid metabolism, tricarboxylic acid (TCA) cycle, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, sphingolipid metabolism as well as tryptophan metabolism. Moreover, a common metabolite arachidonic acid was observed in liver and feces samples. These endogenous metabolites may be considered to be MP's response to liver protection. It will help to further understand the mechanism of MP and provide a basis for further research.

References

[1]

T.D. Veenstra, M. Zhou, Tissue proteomics and metabolomics: an excellent start and a promising future, J. Proteome. Res. 8 (2009) 1617. http://doi.org/10.1021/pr900157d.

[2]

N. Kaplowitz, Drug-induced liver disorders: implications for drugdevelopment and regulation, Drug. Saf. 24 (2001) 483-490. http://doi.org/10.2165/00002018-200124070-00001.

[3]

W. Bernal, J. Wendon, Acute liver failure, New Engl. J. Med. 369 (2013) 2525-2534. http://doi.org/10.1056/NEJMra1208937.

[4]

S.T. Fan, X.J. Huang, S. Wang, et al., Combinatorial usage of fungal polysaccharides from Cordyceps sinensis and Ganoderma atrum ameliorate drug-induced liver injury in mice, Food. Chem. Toxicol. 119 (2018) 66-72. http://doi.org/10.1016/j.fct.2018.05.027.

[5]

X.C. Chen, Y.T. Zhang, Y. Han, et al., Emulsifying properties of polysaccharide conjugates prepared from Chin-Brick tea, J. Agric. Food Chem. 67 (2019) 10165-10173. http://doi.org/10.1021/acs.jafc.9b03161.

[6]

Q.M. Li, J.F. Wang, X.Q. Zha, et al., Structural characterization and immunomodulatory activity of a new polysaccharide from jellyfish, Carbohydr. Polym. 159 (2017) 188-194. http://doi.org/10.1016/j.carbpol.2016.12.031.

[7]

Y. Yi, X.Y. Huang, Z.T. Zhong, et al., Structural and biological properties of polysaccharides from lotus root, Int. J. Biol. Macromol. 130 (2019) 454-461. http://doi.org/10.1016/j.ijbiomac.2019.02.146.

[8]

Y. Yi, W. Xu, H.X. Wang, et al., Natural polysaccharides experience physiochemical and functional changes during preparation: a review, Carbohydr. Polym. 234 (2020) 115896. http://doi.org/10.1016/j.carbpol.2020.115896.

[9]

Y. Zhou, Q.F. Yao, T. Zhang, et al., Antibacterial activity and mechanism of green tea polysaccharide conjugates against Escherichia coli, Ind. Crops. Prod. 152 (2020) 112464. http://doi.org/10.1016/j.indcrop.2020.112464.

[10]

M. Yang, Z.P. Xu, C.J. Xu, et al., Renal protective activity of Hsian-tsao extracts in diabetic rats, Biomed. Environ. Sci. 21 (2008) 222-227. http://doi.org/10.1016/S0895-3988(08)60033-1.

[11]

L.X. Huang, M.Y. Shen, T. Wu, et al., Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways, Int. J. Biol. Macromol. 152 (2020) 766-774. http://doi.org/10.1016/j.ijbiomac.2020.02.318.

[12]

H. Xia, H.L. Tang, F. Wang, et al., An untargeted metabolomics approach reveals further insights of Lycium barbarum polysaccharides in high fat diet and streptozotocin-induced diabetic rats, Food. Res. Int. 116 (2019) 20-29. http://doi.org/10.1016/j.foodres.2018.12.043.

[13]

X.W. Lou, Y.F. Ye, Y. Wang, et al., Effect of high-pressure treatment on taste and metabolite profiles of ducks with two different vinasse-curing processes, Food. Res. Int. 105 (2018) 703-712. http://doi.org/10.1016/j.foodres.2017.11.084.

[14]

Q. Huang, P.Y. Yin, J. Wang, et al., Method for liver tissue metabolic profiling study and its application in type 2 diabetic rats based on ultra performance liquid chromatography-mass spectrometry, J. Chromatogr B. 879 (2011) 961-967. http://doi.org/10.1016/j.jchromb.2011.03.009.

[15]

Y. Yang, Y.F. Ye, D.D. Pan, et al., Metabonomics profiling of marinated meat in soy sauce during processing, J. Sci. Food. Agric. 98 (2018) 1325-1331. http://doi.org/10.1002/jsfa.8596.

[16]

F. Li, A.D. Patterson, C.C. Hofer, et al., Comparative metabolism of cyclophosphamide and ifosfamide in the mouse using UPLC-ESI-QTOFMS-based metabolomics, Biochem. Pharmacol. 80 (2010) 1063-1074. http://doi.org/10.1016/j.bcp.2010.06.002.

[17]

J. Willebrords, I.V. Pereira, M. Maes, et al., Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research, Prog. Lipid. Res. 59 (2015) 106-125. http://doi.org/10.1016/j.plipres.2015.05.002.

[18]

E.M. Forsberg, T.H. Huan, D. Rinehart, et al., Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online, Nat. Protoc. 13 (2018) 633-651. http://doi.org/10.1038/nprot.2017.151.

[19]

Y.Z. Hong, M.Y. Shen, L.X. Huang, et al., Mesona chinensis Benth polysaccharides alleviates liver injury by beneficial regulation of gut microbiota in cyclophosphamide-induced mice, Food Sci. Hum. Well. 11 (2022) 74-84. http://doi.org/10.1016/j.fshw.2021.07.009.

[20]

L.X. Huang, M. Huang, M.Y. Shen, et al., Sulfated modification enhanced the antioxidant activity of Mesona chinensis Benth polysaccharide and its protective effect on cellular oxidative stress, Int. J. Biol. Macromol. 136 (2019) 1000-1006. http://doi.org/10.1016/j.ijbiomac.2019.06.199.

[21]

J.L. Hu, S.P. Nie, F.F. Min, et al., Polysaccharide from seeds of Plantago asiatica L. increases short-chain fatty acid production and fecal moisture along with lowering pH in mouse colon, J. Agric. Food. Chem. 60 (2012) 11525-11532. http://doi.org/10.1021/jf302169u.

[22]

X.Y. Wang, J.P. Luo, R. Chen, et al., Dendrobium huoshanense polysaccharide prevents ethanol-induced liver injury in mice by metabolomic analysis, Int. J. Biol. Macromol. 78 (2015) 354-362. http://doi.org/10.1016/j.ijbiomac.2015.04.024.

[23]

Y.E. Tuncil, R.D. Thakkar, A.D.R. Marcia, et al., Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions, Sci. Rep. 8 (2018) 16655. http://doi.org/10.1038/s41598-018-34912-8.

[24]

S.Z. Xie, B. Liu, H.Y. Ye, et al., Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice, Carbohydr. Polym. 206 (2019) 149-162. https://doi.org/10.1016/j.carbpol.2018.11.002.

[25]

P. Ji, Y.M. Wei, H.G. Sun, et al., Metabolomics research on the hepatoprotective effect of Angelica sinensis polysaccharides through gas chromatography-mass spectrometry, J. Chromatogr B. 973C (2014) 45-54. http://doi.org/10.1016/j.jchromb.2014.10.009.

[26]

Y.Y. Chen, J.A. Duan, J.M. Guo, et al., Yuanhuapine-induced intestinal and hepatotoxicity were correlated with disturbance of amino acids, lipids, carbohydrate metabolism and gut microflora function: a rat urine metabonomic study, J. Chromatogr. B 1026 (2016) 183-192. http://doi.org/10.1016/j.jchromb.2015.08.024.

[27]

S.K. Jackson, W. Abate, A.J. Tonks, Lysophospholipid acyltransferases: novel potential regulators of the inflammatory response and target for new drug discovery, Pharmacol. Ther. 119 (2008) 104-114. http://doi.org/10.1016/j.pharmthera.2008.04.001.

[28]

P. Castro-Gomez, A. Garcia-Serrano, F. Visioli, et al., Relevance of dietary glycerophospholipids and sphingolipids to human health, Prostag. Leukotr. Ess. 101 (2015) 41-51. http://doi.org/10.1016/j.plefa.2015.07.004.

[29]

Y. Zhang, Z.W. Wang, G.J. Jin, et al., Regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus on fat-emulsion-induced hyperlipidemia rats, Int. J. Biol. Macromol. 101 (2017) 107-116. http://doi.org/10.1016/j.ijbiomac.2017.03.084.

[30]

S. Basu, Oxidative injury induced cyclooxygenase activation in experimental hepatotoxicity, Biochem. Biophys. Res. Commun. 254 (1999) 764-767. http://doi.org/10.1006/bbrc.1998.9956.

[31]

D. Cao, C.C. Xu, Y.T. Xue, et al., The therapeutic effect of Ilex pubescens extract on blood stasis model rats according to serum metabolomics, J. Ethnopharmacol. 227 (2018) 18-28. http://doi.org/10.1016/j.jep.2018.08.026.

[32]

Z.D. Fu, J.Y. Cui, Remote sensing between liver and intestine: importance of microbial metabolites, Curr. Pharmacol. Rep. 3 (2017) 101-113. http://doi.org/10.1007/s40495-017-0087-0.

[33]

N. Li, J.Y. Liu, H. Qiu, et al., Use of metabolomic profiling in the study of arachidonic acid metabolism in cardiovascular disease, Congestive. Heart. failure. 17 (2011) 42-46. http://doi.org/10.1111/j.1751-7133.2010.00209.x.

[34]

B. Ogretmen, Sphingolipid metabolism in cancer signalling and therapy, Nat. Rev. Cancer. 18 (2018) 33-50. http://doi.org/10.1038/nrc.2017.96.

[35]

L.M. Hinder, A. Vivekanandan-Giri, L.L. McLean, et al., Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes, J. Endocrinol. 216 (2013) 1-11. http://doi.org/10.1530/joe-12-0356.

[36]

Y.R. Liu, R.Q. Huang, L.J. Liu, et al., Metabonomics study of urine from Sprague-Dawley rats exposed to Huang-yao-zi using 1H NMR spectroscopy, J. Pharm. Biomed. Anal. 52 (2010) 136-141. http://doi.org/10.1016/j.jpba.2009.12.026.

[37]

F. Yang, Y. Xu, A.Z. Xiong, et al., Evaluation of the protective effect of Rhei Radix et Rhizoma against α-naphthylisothiocyanate induced liver injury based on metabolic profile of bile acids, J. Ethnopharmacol. 144 (2012) 599-604. http://doi.org/10.1016/j.jep.2012.09.049.

[38]

C.M. Yu, J.Q. Fu, L.D. Guo, et al., UPLC-MS-based serum metabolomics reveals protective effect of Ganoderma lucidum polysaccharide on ionizing radiation injury, J. Ethnopharmacol. 258 (2020) 112814. http://doi.org/10.1016/j.jep.2020.112814.

[39]

Y. Yuan, X. Wu, Y.L. Hong, et al., Salidroside ameliorates liver metabonomics in relation to modified gut-liver FXR signaling in furan-induced mice, Food. Chem. Toxicol. 140 (2020) 111311. http://doi.org/10.1016/j.fct.2020.111311.

[40]

L.H. Men, Z.F. Pi, Y. Zhou, et al., Urine metabolomics of high-fat diet induced obesity using UHPLC-Q-TOF-MS, J. Pharm. Biomed. Anal. 132 (2017) 258-266. http://doi.org/10.1016/j.jpba.2016.10.012.

[41]

G.D. Besten, A. Bleeker, A. Gerding, et al., Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARg-dependent switch from lipogenesis to fat oxidation, Diabetes. 64 (2015) 2398-2408. http://doi.org/10.2337/db14-1213.

[42]

F. Bishehsari, P.A. Engen, N.Z. Preite, et al., Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis, Genes. 9 (2018) 102. http://doi.org/10.3390/genes9020102.

Food Science and Human Wellness
Pages 584-595
Cite this article:
Hong Y, Shen M, Yu Q, et al. UPLC-Q-TOF/MS-based metabolomics reveals modulatory effects of Mesona chinensis Benth polysaccharide in liver injury mice induced by cyclophosphamide. Food Science and Human Wellness, 2023, 12(2): 584-595. https://doi.org/10.1016/j.fshw.2022.07.061

569

Views

53

Downloads

16

Crossref

14

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 26 February 2021
Revised: 14 March 2021
Accepted: 14 March 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return