AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Structure elucidation and in vitro rat intestinal fermentation properties of a novel sulfated glucogalactan from Porphyra haitanensis

Peilin Chena,bLu LiubZirun ChengbYi Zhanga,b,cBaodong Zhenga,b,cXiaoke Hud( )Hongliang Zenga,b,c( )
Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

This study was to investigate the structure and rat fecal microbial fermentation properties of a polysaccharide fraction (PHP2) isolated from the red marine alga Porphyra haitanensis. PHP2 was characterized as a sulfated glucogalactan, with a hypothetical backbone structure of →4)Gα(1→6)G4Sβ(1→4)Glc(1→ and a side chain of Man(1→6)Glc. PHP2 had an irregular spherical chain conformation. The 16S rRNA sequence analysis revealed that PHP2 modulated the rat fecal micro-flora composition, with a similar effect to inulin, changing the dominant genus (Lactobacillus and Escherichia-Shigella) and promoting the growth of organisms that degrade sulfur-containing polysaccharides, such as Desulfovibrio, Ruminococcaceae_UCG-005, and Ruminococcus_2. PHP2 can promote production of acetic, propionic and butyric acid by rat fecal micro-flora. Prediction of metabolic function suggested that PHP2 could modulate cholesterol metabolism. The sulfated glucogalactan fermentation behavior may be associated with its monosaccharide composition, chain branching and chain conformation. PHP2 appeared to have considerable potential as functional food, and was associated with sulfur-containing polysaccharides in general.

References

[1]

L.X. Huang, M.Y. Shen, G.A. Morris, et al., Sulfated polysaccharides: immunomodulation and signaling mechanisms, Trends Food Sci. Technol. 92 (2019) 1-11. https://doi.org/10.1016/j.tifs.2019.08.008

[2]

S.Y. Xu, X.S. Huang, K.L. Cheong, Recent advances in marine algae polysaccharides: isolation, structure, and activities, Mar. Drugs 15 (2017) 388. https://doi.org/10.3390/md15120388

[3]

S.Y. Xu, J.J. Aweya, N. Li, et al., Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota, Food Chem. 289 (2019) 177-186. https://doi.org/10.1016/j.foodchem.2019.03.050

[4]

G.P. Gong, J.X. Zhao, C.J. Wang, et al., Structural characterization and antioxidant activities of the degradation products from Porphyra haitanensis polysaccharides, Process Biochem. 74 (2018) 185-193. https://doi.org/10.1016/j.procbio.2018.05.022

[5]

C.L. Shi, T. Pan, M.J. Cao, et al., Suppression of Th2 immune responses by the sulfated polysaccharide from Porphyra haitanensis in tropomyosin-sensitized mice, Int. Immunopharmacol. 24 (2015) 211-218. https://doi.org/10.1016/j.intimp.2014.11.019

[6]

Z.S. Zhang, X.M. Wang, H.L. Su, et al., Effect of sulfated galactan from Porphyra haitanensis on H2O2-induced premature senescence in WI-38 cells, Int. J. Biol. Macromol. 106 (2017) 1235-1239. https://doi.org/10.1016/j.ijbiomac.2017.08.123

[7]

B. Sánchez, S. Delgado, A. Blanco-Míguez, et al., Probiotics, gut microbiota and their influence on host health and disease, Mol. Nutr. Food Res. 61 (2016) 1600240. https://doi.org/10.1002/mnfr.201600240

[8]

E. Difilippo, F.P. Pan, M. Logtenberg, et al., In vitro fermentation of porcine milk- and galacto-oligosaccharides using piglet fecal inoculum, J. Agric. Food Chem. 64 (2016) 2127-2133. https://doi.org/10.1021/acs.jafc.5b05384

[9]

Y. Zhao, Y.M. Yan, W.T. Zhou, et al., Effects of polysaccharides from bee collected pollen of Chinese wolfberry on immune response and gut microbiota composition in cyclophosphamide-treated mice, J. Funct. Foods 72 (2020) 104057. https://doi.org/10.1016/j.jff.2020.104057

[10]

L.X. Zheng, X.Q. Chen, K.L. Cheong, Current trends in marine algae polysaccharides: the digestive tract, microbial catabolism, and prebiotic potential, Int. J. Biol. Macromol. 151 (2020) 344-354. https://doi.org/10.1016/j.ijbiomac.2020.02.168

[11]

Y.Y. Zhang, S. Li, X.H. Wang, et al., Advances in lentinan: isolation, structure, chain conformation and bioactivities, Food Hydrocoll. 25 (2011) 196-206. https://doi.org/10.1016/j.foodhyd.2010.02.001

[12]

J.L. Hu, S.P. Nie, C. Li, et al., Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation, J. Agric. Food Chem. 61 (2013) 6092-6101. https://doi.org/10.1021/jf401877j

[13]

Q. Ding, S.P. Nie, J.L. Hu, et al., In vitro and in vivo gastrointestinal digestion and fermentation of the polysaccharide from Ganoderma atrum, Food Hydrocoll. 63 (2017) 646-655. https://doi.org/10.1016/j.foodhyd.2016.10.018

[14]

S. Charoensiddhi, M.A. Conlon, M.S. Vuaran, et al., Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation, J. Funct. Foods 24 (2016) 221-230. https://doi.org/10.1016/j.jff.2016.04.016

[15]

D. Bajury, M. Rawi, I. Sazali, et al., Prebiotic evaluation of red seaweed (Kappaphycus alvarezii) using in vitro colon model, Int. J. Food Sci. Nutr. 68 (2017) 1-8. https://doi.org/10.1080/09637486.2017.1309522

[16]

Y.T. Wu, Y.F. Huo, L. Xu, et al., Purification, characterization and antioxidant activity of polysaccharides from Porphyra haitanensis, Int. J. Biol. Macromol. 165 (2020) 2116-2125. https://doi.org/10.1016/j.ijbiomac.2020.10.053

[17]

M. Dubois, K. Giles, P. Rebers, et al., Colorimetric method for determination of sugar and related substances, Anal. Chem. 28 (1956) 250-256

[18]

Y. Yu, Y.P. Li, C.Y. Du, et al., Compositional and structural characteristics of sulfated polysaccharide from Enteromorpha prolifera, Carbohydr. Polym. 165 (2017) 221-228. https://doi.org/10.1016/j.carbpol.2017.02.011

[19]

Y.Z. Chi, H. Li, P. Wang, et al., Structural characterization of ulvan extracted from Ulva clathrata assisted by an ulvan lyase, Carbohydr. Polym. 229 (2020) 115497. https://doi.org/10.1016/j.carbpol.2019.115497

[20]

Y.L. Ren, G.Q. Zheng, L.J. You, et al., Structural characterization and macrophage immunomodulatory activity of a polysaccharide isolated from Gracilaria lemaneiformis, J. Funct. Foods 33 (2017) 286-296. https://doi.org/10.1016/j.jff.2017.03.062

[21]

J.J. Guo, Z.C. Zheng, X. Lu, et al., Purification and characterisation of κ-carrageenan oligosaccharides prepared by κ-carrageenase from Thalassospira sp. Fjfst-332, Carbohydr. Polym. 180 (2018) 314-327. https://doi.org/10.1016/j.carbpol.2017.10.043

[22]

W.T. He, H.H. Sun, L.J. Su, et al., Structure and anticoagulant activity of a sulfated fucan from the sea cucumber Acaudina leucoprocta, Int. J. Biol. Macromol. 164 (2020) 87-94. https://doi.org/10.1016/j.ijbiomac.2020.07.080

[23]

J.J. Li, B. Pang, X.M. Yan, et al., Prebiotic properties of different polysaccharide fractions from Artemisia sphaerocephala Krasch seeds evaluated by simulated digestion and in vitro fermentation by human fecal microbiota, Int. J. Biol. Macromol. 162 (2020) 414-424. https://doi.org/10.1016/j.ijbiomac.2020.06.174

[24]

P.L. Chen, Y.H. Xu, S.Q. Yang, et al., Application of X-ray diffraction and energy dispersive spectroscopy in the isolation of sulfated polysaccharide from Porphyra haitanensis and its antioxidant capacity under in vitro digestion, J. Sci. Food Agric. 101 (2021) 6452–6462. https://doi.org/10.1002/jsfa.11316

[25]

M.Q. Wu, W. Li, Y.L. Zhang, et al., Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste, Carbohydr. Polym. 253 (2021) 117190. https://doi.org/10.1016/j.carbpol.2020.117190

[26]

P. Hu, Z.X. Li, M.C. Chen, et al., Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice, Carbohydr. Polym. 139 (2016) 150-158. https://doi.org/10.1016/j.carbpol.2015.12.019

[27]

M. Şen, E.N. Erboz, Determination of critical gelation conditions of κ-carrageenan by viscosimetric and FT-IR analyses, Food Res. Int. 43 (2010) 1361-1364. https://doi.org/10.1016/j.foodres.2010.03.021

[28]

J.L. Wang, H.Y. Guo, J. Zhang, et al., Sulfated modification, characterization and structure-antioxidant relationships of Artemisia sphaerocephala polysaccharides, Carbohydr. Polym. 81 (2010) 897-905. https://doi.org/10.1016/j.carbpol.2010.04.002

[29]

Y. Lu, L. Xu, Y.Z. Cong, et al., Structural characteristics and anticancer/antioxidant activities of a novel polysaccharide from Trichoderma kanganensis, Carbohydr. Polym. 205 (2019) 63-71. https://doi.org/10.1016/j.carbpol.2018.09.068

[30]

H. Zhang, P. Zou, H.T. Zhao, et al., Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis, Carbohydr. Polym. 251 (2021) 117078. https://doi.org/10.1016/j.carbpol.2020.117078

[31]

E. Wiercigroch, E. Szafraniec, K. Czamara, et al., Raman and infrared spectroscopy of carbohydrates: a review, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 185 (2017) 317-335. https://doi.org/10.1016/j.saa.2017.05.045

[32]

E. Gómez-Ordóñez, P. Rupérez, FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds, Food Hydrocoll. 25 (2011) 1514-1520. https://doi.org/10.1016/j.foodhyd.2011.02.009

[33]

F. Li, Y.L. Wei, L. Liang, et al., A novel low-molecular-mass pumpkin polysaccharide: structural characterization, antioxidant activity, and hypoglycemic potential, Carbohydr. Polym. 251 (2021) 117090. https://doi.org/10.1016/j.carbpol.2020.117090

[34]

Y.Q. Chen, Y.Y. Liu, M.M.R. Sarker, et al., Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways, Carbohydr. Polym. 198 (2018) 452-461. https://doi.org/10.1016/j.carbpol.2018.06.077

[35]

Z.M. Wang, X. Peng, K.L.D. Lee, et al., Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1, Food Chem. 125 (2011) 637-643. https://doi.org/10.1016/j.foodchem.2010.09.052

[36]

B.M. Khan, H.M. Qiu, S.Y. Xu, et al., Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra haitanensis, Int. J. Biol. Macromol. 145 (2020) 1155-1161. https://doi.org/10.1016/j.ijbiomac.2019.10.040

[37]

H.M. Qiu, S. Veeraperumal, J.H. Lv, et al., Physicochemical properties and potential beneficial effects of porphyran from Porphyra haitanensis on intestinal epithelial cells, Carbohydr. Polym. 246 (2020) 116626. https://doi.org/10.1016/j.carbpol.2020.116626

[38]

H.S. Wang, J.R. Chen, P.F. Ren, et al., Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide, Ultrason. Sonochem. 70 (2021) 105355. https://doi.org/10.1016/j.ultsonch.2020.105355

[39]

B. Peng, Y.Y. Luo, X.J. Hu, et al., Isolation, structural characterization, and immunostimulatory activity of a new water-soluble polysaccharide and its sulfated derivative from Citrus medica L. var. sarcodactylis, Int. J. Biol. Macromol. 123 (2019) 500-511. https://doi.org/10.1016/j.ijbiomac.2018.11.113

[40]

W. Liu, H. Wang, J.P. Yu, et al., Structure, chain conformation, and immunomodulatory activity of the polysaccharide purified from Bacillus Calmette Guerin formulation, Carbohydr. Polym. 150 (2016) 149-158. https://doi.org/10.1016/j.carbpol.2016.05.011

[41]

Y. Ding, Y.M. Yan, Y.J. Peng, et al., In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation by human gut microbiota of polysaccharides from the fruits of Lycium barbarum, Int. J. Biol. Macromol. 125 (2019) 751-760. https://doi.org/10.1016/j.ijbiomac.2018.12.081

[42]

H.L. Zeng, C.C. Huang, S. Lin, et al., Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice, J. Agric. Food Chem. 65 (2017) 9217-9225. https://doi.org/10.1021/acs.jafc.7b02860

[43]

L.G. Chen, J.W. Liu, X.D. Ge, et al., Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from Helicteres angustifolia L, Int. J. Biol. Macromol. 141 (2019) 1065-1071. https://doi.org/10.1016/j.ijbiomac.2019.09.073

[44]

S.Y. Xu, X.Q. Chen, Y. Liu, et al., Ultrasonic/microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis, Int. J. Biol. Macromol. 152 (2020) 748-756. https://doi.org/10.1016/j.ijbiomac.2020.02.305

[45]

X. Zhang, J.J. Aweya, Z.X. Huang, et al., In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota, Carbohydr. Polym. 234 (2020) 115894. https://doi.org/10.1016/j.carbpol.2020.115894

[46]

X.L. Ze, S.H. Duncan, P. Louis, et al., Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon, Isme J. 6 (2012) 1535-1543. https://doi.org/10.1038/ismej.2012.4

[47]

G. Voordouw, The genus Desulfovibrio: the centennial, Appl. Environ. Microbiol. 61 (1995) 2813-2819. https://doi.org/10.1128/AEM.61.8.2813-2819.1995

[48]

F.F. Wu, X.F. Guo, J.C. Zhang, et al., Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract, Exp. Ther. Med. 14 (2017) 3122-3126. https://doi.org/10.3892/etm.2017.4878

[49]

M.J. Wang, G.J. Chen, D. Chen, et al., Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro, Int. J. Biol. Macromol. 140 (2019) 858-870. https://doi.org/10.1016/j.ijbiomac.2019.08.187

[50]

J.Y. Yang, I. Martínez, J. Walter, et al., In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production, Anaerobe 23 (2013) 74-81. https://doi.org/10.1016/j.anaerobe.2013.06.012

[51]

F. Guillon, A. Auffret, J.A. Robertson, et al., Relationships between physical characteristics of sugar-beet fibre and its fermentability by human faecal flora, Carbohydr. Polym. 37 (1998) 185-197. https://doi.org/10.1016/S0144-8617(98)00053-8

[52]

J. Sonnenburg, F. Bäckhed, Diet-microbiota interactions as moderators of human metabolism, Nat. 535 (2016) 56-64. https://doi.org/10.1038/nature18846

[53]

W. Broekaert, C. Courtin, K. Verbeke, et al., Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides, Crit. Rev. Food Sci. Nutr. 51 (2011) 178-194. https://doi.org/10.1080/10408390903044768

[54]

Y. Zhang, G. Bobe, J. Revel, et al., Improvements in metabolic syndrome by xanthohumol derivatives are linked to altered gut microbiota and bile acid metabolism, Mol. Nutr. Food Res. 64 (2020) 1900789. https://doi.org/10.1002/mnfr.202070003

[55]

R. Karimi, M. Azizi, M. Sahari, et al., In vitro fermentation profile of soluble dietary fibers obtained by different enzymatic extractions from barley bran, Bioact. Carbohydr. Diet. Fibre 21 (2019) 100205. https://doi.org/10.1016/j.bcdf.2019.100205

[56]

A. Tripathi, J. Debelius, D. Brenner, et al., The gut-liver axis and the intersection with the microbiome, Nat. Rev. Gastroenterol. Hepatol. 15 (2018) 397-411. https://doi.org/10.1038/s41575-018-0011-z

[57]

F.J. Huang, X.J. Zheng, X.H. Ma, et al., Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism, Nat. Commun. 10 (2019) 4971. https://doi.org/10.1038/s41467-019-12896-x

Food Science and Human Wellness
Pages 596-606
Cite this article:
Chen P, Liu L, Cheng Z, et al. Structure elucidation and in vitro rat intestinal fermentation properties of a novel sulfated glucogalactan from Porphyra haitanensis. Food Science and Human Wellness, 2023, 12(2): 596-606. https://doi.org/10.1016/j.fshw.2022.07.062

645

Views

30

Downloads

11

Crossref

7

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 29 April 2021
Revised: 12 June 2021
Accepted: 10 August 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return