AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The use of bacterial cellulose from kombucha to produce curcumin loaded Pickering emulsion with improved stability and antioxidant properties

Zhiyu LiaWenxiu HuaJiajia DongbFidelis AziaXiao XucChuanhai TudSijie TangaMingsheng Donga( )
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
School of Life Science, Shaoxing University, Shaoxing 312000, China
College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Curcumin is a bioactive molecule with limited industrial application because of its instability and poor solubility in water. Herein, curcumin-loaded Pickering emulsion was produced using purified bacterial cellulose from fermented kombucha (KBC). The morphology, particle size, stability, rheological properties, and antioxidant activities of the curcumin-loaded Pickering emulsion were investigated. The fluorescence microscope and scanning electron microscopy images showed that the curcumin-loaded Pickering emulsion formed circular droplets with good encapsulation. The curcumin-load Pickering emulsion exhibited better stability under a wide range of temperatures, low pH, sunlight, and UV-365 nm than the free curcumin, indicating that the KBC after high-pressure homogenization improved the stability of the CPE. The encapsulated curcumin retained its antioxidant capacity and exhibited higher functional potential than the free curcumin. The study demonstrated that the KBC could be an excellent material for preparing a Pickering emulsion to improve curcumin stability and antioxidant activity.

References

[1]

S. Nabavi, R. Thiagarajan, L. Rastrelli, et al., Curcumin: a natural product for diabetes and its complications, Curr. Top. Med. Chem. 15 (2015) 2445-2455. https://doi.org/10.2174/1568026615666150619142519.

[2]

X.X. Yang, C.M. Li, C.Z. Huang, Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection, Nanoscale. 8 (2016) https://doi.org/3040-3080.10.1039/c5nr07918g.

[3]

J. Wang, H. Wang, R. Zhu, et al., Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1beta transgenic mice subjected to the lipopolysaccharide-induced sepsis, Biomaterials 53 (2015) 475-483. https://doi.org/10.1016/j.biomaterials.2015.02.116.

[4]

A. Vijayalakshmi, G. Sindhu, Dose responsive efficacy of umbelliferone on lipid peroxidation, anti-oxidant, and xenobiotic metabolism in DMBA-induced oral carcinogenesis, Biomed. Pharmacother. 88 (2017) 852-862. https://doi.org/10.1016/j.biopha.2017.01.064.

[5]

D. Gromadzki, V. Tzankova, M. Kondeva, et al., Amphiphilic core-shell nanoparticles with dimer fatty acid-based aliphatic polyester core and zwitterionic poly(sulfobetaine) shell for controlled delivery of curcumin, Int. J. Polym. Mater. 67 (2017). 1050. https://doi.org/10.1080/00914037.2016.1278217.

[6]

D.J. Mcclements, Advances in fabrication of emulsions with enhanced functionality using structural design principles, Curr. Opin. Colloid Interface Sci. 17 (2012) 235-245. https://doi.org/10.1016/j.cocis.2012.06.002.

[7]

W.W. Mwangi, H.P. Lim, L.E. Low, et al., Food-grade Pickering emulsions for encapsulation and delivery of bioactives, Trends Food Sci. Technol. 100 (2020) 320-332. https://doi.org/10.1016/j.tifs.2020.04.020.

[8]

R. Aveyard, B.P. Binks, J.H. Clint, Emulsions stabilised solely by colloidal particles, Adv. Colloid Interface Sci. 100 (2003) 503-546. https://doi.org/10.1016/S0001-8686(02)00069-6.

[9]

T.S. Horozov, B.P. Binks, Particle-stabilized emulsions: a bilayer or a bridging monolayer?, Angew. Chem. Int. Ed. 45 (2010) 773-776. https://doi.org/10.1002/anie.200503131.

[10]

C.C. Berton-Carabin, K. Schroen, Pickering emulsions for food applications: background, trends, and challenges, Annu. Rev. Food Sci. Technol. 6 (2015) 263-297. https://doi.org/10.1146/annurev-food-081114-110822.

[11]

D. Laavanya, S. Shirkole, P. Balasubramanian, current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation, J. Clean. Prod. 295 (2021) 126454. https://doi.org/10.1016/j.jclepro.2021.126454.

[12]

M. Wada, L. Heux, J. Sugiyama, Polymorphism of cellulose Ⅰ family: reinvestigation of cellulose Ⅳ, Biomacromolecules 5 (2004) 1385-1391. https://doi.org/10.1021/bm0345357.

[13]

C. Costa, B. Medronho, A. Filipe, et al., Emulsion formation and stabilization by biomolecules: the leading role of cellulose, Polymers (Basel). 11 (2019) 1570. https://doi.org/10.3390/polym11101570.

[14]

H. Yan, X. Chen, H. Song, et al., Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion, Food Hydrocoll. 72 (2017) 127-135. https://doi.org/10.1016/j.foodhyd.2017.05.044.

[15]

M. Jonoobi, A.P. Mathew, K. Oksman, Producing low-cost cellulose nanofiber from sludge as new source of raw materials, Ind. Crops. Prod. 40 (2012) 232-238. https://doi.org/10.1016/j.indcrop.2012.03.018.

[16]

A. Ferrer, I. Filpponen, A. Rodriguez, et al., Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper, Bioresour. Technol. 125 (2012) 249-255. https://doi.org/10.1016/j.biortech.2012.08.108.

[17]

K. Saelee, N. Yingkamhaeng, T. Nimchua, et al., An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization, Ind. Crops. Prod. 82 (2016) 149-160. https://doi.org/10.1016/j.indcrop.2015.11.064.

[18]

N. Kawee, N.T. Lam, P. Sukyai, Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization, Carbohydr. Polym. 179 (2018) 394-401. https://doi.org/10.1016/j.carbpol.2017.09.101.

[19]

E. Leonarski, K. Cesca, E. Zanella, et al., Production of kombucha-like beverage and bacterial cellulose by acerola byproduct as raw material, LWT. 135 (2021). https://doi.org/10.1016/j.lwt.2020.110075.

[20]

N.K. Nguyen, P.B. Nguyen, H.T. Nguyen, et al., Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid, LWT. 64(2) (2015) 1149-1155. https://doi.org/10.1016/j.lwt.2015.07.018.

[21]

A. Baschali, E. Tsakalidou, A. Kyriacou, et al., Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group, Nutr. Res. Rev. 30(1) (2017) 1-24. https://doi.org/10.1017/S0954422416000202.

[22]

D. Banerjee, S.A. Hassarajani, B. Maity, et al., Comparative healing property of kombucha tea and black tea against indomethacin-induced gastric ulceration in mice: possible mechanism of action, Food Funct. 1 (2010) 284-293. https://doi.org/10.1039/C0FO00025F.

[23]

A. Mihaly-Cozmuta, A. Peter, G. Craciun, et al., Preparation and characterization of active cellulose-based papers modified with TiO2, Ag and zeolite nanocomposites for bread packaging application, Cellulose. 24 (2017) 1-18. https://doi.org/10.1007/s10570-017-1383-x.

[24]

S.A. Villarreal-Soto, S. Beaufort, J. Bouajila, et al., Understanding kombucha tea fermentation: a review, J. Food Sci. 83 (2018) 580-588. https://doi.org/10.1111/1750-3841.14068.

[25]

A.S. Amarasekara, D. Wang, T.L. Grady, A comparison of kombucha SCOBY bacterial cellulose purification methods, SN Appl. Sci. 2 (2020) 240. https://doi.org/10.1007/s42452-020-1982-2.

[26]

L. Segal, J.J. Creely, A.E. Martin, et al., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29 (1959) 786-794. https://doi.org/10.1177/004051755902901003.

[27]

A. Marefati, M. Bertrand, M. Sjöö, et al., Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization, Food Hydrocoll. 63 (2017) 309-320. https://doi.org/10.1016/j.foodhyd.2016.08.043.

[28]

I. Kalashnikova, H. Bizot, P. Bertoncini, et al., Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions, Soft Matter. 9 (2013) 952-959. https://doi.org/10.1039/c2sm26472b.

[29]

Z.Y. Li, F. Azi, Z.W. Ge, et al., Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: fermentation profiles and genome-wide analysis, Int. J. Biol. Macromol. 191 (2021) 211-221. https://doi.org/10.1016/j.ijbiomac.2021.09.077.

[30]

C. Huang, H.J. Guo, L. Xiong, et al., Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus, Carbohydr. Polym. 136 (2016) 198-202. https://doi.org/10.1016/j.carbpol.2015.09.043.

[31]

Y. Ni, J. Li, L. Fan, Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions, Int. J. Biol. Macromol. 149 (2020) 617-626. https://doi.org/10.1016/j.ijbiomac.2020.01.263.

[32]

B.V. Mohite, S.V. Patil, Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529, Carbohydr. Polym. 106 (2014) 132-141. https://doi.org/10.1016/j.carbpol.2014.02.012.

[33]

J. George, K.V. Ramana, S.N. Sabapathy, et al., Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties, Int. J. Biol. Macromol. 37 (2005) 189-194. https://doi.org/10.1016/j.ijbiomac.2005.10.007.

[34]

M.A. Moharram, O.M. Mahmoud, FTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose Ⅰ into cellulose Ⅱ during mercerization, J. Appl. Polym. Sci. 107 (2008) 30-36. https://doi.org/10.1002/app.26748.

[35]

D. Ciolacu, A.M. Oprea, N. Anghel, et al., New cellulose-lignin hydrogels and their application in controlled release of polyphenols, Mater. Sci. Eng. C. 32 (2012) 452-463. https://doi.org/10.1016/j.msec.2011.11.018.

[36]

J. Gong, J. Li, J. Xu, et al., Research on cellulose nanocrystals produced from cellulose sources with various polymorphs, RSC Adv. 7 (2017) 33486-33493. https://doi.org/10.1039/C7RA06222B.

[37]

G. Kaptay, On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams, Colloid. Surface. A. 282-283 (2006) 387-401. https://doi.org/10.1016/j.colsurfa.2005.12.021.

[38]

A.L.R. Costa, A. Gomes, H. Tibolla, et al., Cellulose nanofibers from banana peels as a Pickering emulsifier: high-energy emulsification processes, Carbohydr. Polym. 194 (2018) 122-131. https://doi.org/10.1016/j.carbpol.2018.04.001.

[39]

C. Sun, S. Gunasekaran, M.P. Richards, Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions, Food Hydrocoll. 21 (2007) 555-564. https://doi.org/10.1016/j.foodhyd.2006.06.003.

[40]

K. Abdolmaleki, M.A. Mohammadifar, R. Mohammadi, et al., The effect of pH and salt on the stability and physicochemical properties of oil-in-water emulsions prepared with gum tragacanth, Carbohydr. Polym. 140 (2016) 342-348. https://doi.org/10.1016/j.carbpol.2015.12.081.

[41]

F. Asabuwa Ngwabebhoh, S. Ilkar Erdagi, U. Yildiz, Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities, Carbohydr. Polym. 201 (2018) 317-328. https://doi.org/10.1016/j.carbpol.2018.08.079.

[42]

X. Zhai, D. Lin, D. Liu, et al., Emulsions stabilized by nanofibers from bacterial cellulose: new potential food-grade Pickering emulsions, Food Res. Int. 103 (2018) 12-20. https://doi.org/10.1016/j.foodres.2017.10.030.

[43]

K.M. Nelson, J.L. Dahlin, J. Bisson, et al., The essential medicinal chemistry of curcumin, J. Med. Chem. 60 (2017) 1620-1637. https://doi.org/10.1021/acs.jmedchem.6b00975.

[44]

J. Yu, Q. Wang, H. Zhang, et al., Increased stability of curcumin-loaded Pickering emulsions based on glycated proteins and chitooligosaccharides for functional food application, LWT. 148 (2021) 111742. https://doi.org/10.1016/j.lwt.2021.111742.

[45]

A. Blanco-Padilla, A. López-Rubio, G. Loarca-Piña, et al., Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers, LWT. 63 (2015) 1137-1144. https://doi.org/10.1016/j.lwt.2015.03.081.

[46]

B.R. Shah, C. Zhang, Y. Li, et al., Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and pickering emulsion based on chitosan-tripolyphosphate nanoparticles, Food Res. Int. 89 (2016) 399-407. https://doi.org/10.1016/j.foodres.2016.08.022.

[47]

K. Yoncheva, K. Kamenova, T. Perperieva, et al., Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin, Int. J. Pharm. 490 (2015) 298-307. https://doi.org/10.1016/j.ijpharm.2015.05.057.

Food Science and Human Wellness
Pages 669-679
Cite this article:
Li Z, Hu W, Dong J, et al. The use of bacterial cellulose from kombucha to produce curcumin loaded Pickering emulsion with improved stability and antioxidant properties. Food Science and Human Wellness, 2023, 12(2): 669-679. https://doi.org/10.1016/j.fshw.2022.07.069

618

Views

63

Downloads

16

Crossref

14

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 13 December 2021
Revised: 29 December 2021
Accepted: 28 January 2022
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return