AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The role of gut microbiota and its metabolites short-chain fatty acids in food allergy

Chen ChenChenglong LiuKe ZhangWentong Xue( )
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Emerging evidence indicated that the increase in food allergy (FA) over the past few decades was associated with the abnormal compositional and metabolic changes of gut microbiota. Gut microbiota played a vital role in maintaining the homeostasis of the immune system and the dysbiosis of gut microbiota promoted the occurrence of FA. Recent research suggested that short-chain fatty acids (SCFAs), the main metabolites derived from gut microbiota, contributed to FA protection. Herein, we provided a comprehensive review on the relationship between gut microbiota and FA. The multifaceted mechanisms underlying beneficial effects of gut microbiota composition/metabolites on the regulation of diverse cellular pathways in intestinal epithelial cells, dendritic cells, innate lymphoid cells, T cells, B cells and mast cells in the immune system were discussed systematically. These findings emphasized the positive function of gut microbiota in FA and provided novel ideas for the treatment or prevention of FA in the future.

References

[1]

W. Yu, D.M.H. Freeland, K.C. Nadeau, Food allergy: immune mechanisms, diagnosis and immunotherapy, Nat. Rev. Immunol. 16 (2016) 751-765. https://doi.org/10.1038/nri.2016.111.

[2]

L. Tordesillas, M.C. Berin, H.A. Sampson, Immunology of food allergy, Immunity 47 (2017) 32-50. http://dx.doi.org/10.1016/j.immuni.2017.07.004.

[3]

S.M. Jones, A.W. Burks, Food allergy, N. Engl. J. Med. 377 (2017) 1168-1176. http://dx.doi.org/10.1056/NEJMcp1611971.

[4]

S.H. Sicherer, H.A. Sampson, Food allergy: epidemiology, pathogenesis, diagnosis, and treatment, J. Allergy Clin. Immunol. 133 (2014) 291-307. http://dx.doi.org/10.1016/j.jaci.2013.11.020.

[5]

H. MATTAR, P. Padfield, A. Simpson, et al., The impact of a baked muffin matrix on the bioaccessibility and IgE reactivity of egg and peanut allergens, Food Chem. 362 (2021) 129879. https://doi.org/10.1016/j.foodchem.2021.129879.

[6]

A.W. Burks, Peanut allergy, Lancet 371 (2008) 1538-1546. http://dx.doi.org/10.1016/S0140-6736(08)60659-5.

[7]

J. Molloy, K. Allen, F. Collier, et al., The potential link between gut microbiota and IgE-mediated food allergy in early life, Int. J. Environ. Res. Public Health 10 (2013) 7235-7256. http://dx.doi.org/10.3390/ijerph10127235.

[8]

J. Huang, C. Liu, Y. Wang, et al., Application of in vitro and in vivo models in the study of food allergy, Food Science and Human Wellness 7 (2018) 235-243. https://doi.org/10.1016/j.fshw.2018.10.002.

[9]

Z. Ling, Z. Li, X. Liu, et al., Altered fecal microbiota composition associated with food allergy in infants, Appl. Environ. Microb. 80 (2014) 2546-2554. http://dx.doi.org/10.1128/AEM.00003-14.

[10]

M.B. Azad, T. Konya, D.S. Guttman, et al., Infant gut microbiota and food sensitization: associations in the first year of life, Clin. Exp. Allergy 45 (2015) 632-643. http://dx.doi.org/10.1111/cea.12487.

[11]

M.C. Berin, Mechanisms that define transient versus persistent food allergy, J. Allergy Clin. Immunol. 143 (2019) 453-457. https://doi.org/10.1016/j.jaci.2018.12.991.

[12]

F. Cardona, C. Andrés-Lacueva, S. Tulipani, et al., Benefits of polyphenols on gut microbiota and implications in human health, J. Nutr. Boichem. 24 (2013) 1415-1422. https://doi.org/10.1016/j.jnutbio.2013.05.001.

[13]

A. Mardinoglu, S. Shoaie, M. Bergentall, et al., The gut microbiota modulates host amino acid and glutathione metabolism in mice, Mol. Syst. Biol. 11 (2015) 834. http://dx.doi.org/10.15252/msb.20156487.

[14]

S. Subramanian, S. Huq, T. Yatsunenko, et al., Persistent gut microbiota immaturity in malnourished Bangladeshi children, Nature 510 (2014) 417-421. http://dx.doi.org/10.1038/nature13421.

[15]

M. Chi, K. Ma, J. Wang, et al., The immunomodulatory effect of the gut microbiota in kidney disease, J. Immunol. Res. 127 (2021) 1-16. https://doi.org/10.1155/2021/5516035.

[16]

R.E. Ley, F. Bäckhed, P. Turnbaugh, et al., Obesity alters gut microbial ecology, PANS 102 (2005) 11070-11075. http://dx.doi.org/10.1073/pnas.0504978102.

[17]

M. Arumugam, J. Raes, E. Pelletier, et al., Enterotypes of the human gut microbiome, Nature 473 (2011) 174-180. https://doi.org/10.1038/nature09944.

[18]

D. Chernikova, I. Yuan, M. Shaker, Prevention of allergy with diverse and healthy microbiota: an update, Curr. Opin. Pediatr. 31 (2019) 418-425. https://doi.org/10.1097/MOP.0000000000000766.

[19]

O. Castaner, A. Goday, Y.M. Park, et al., The gut microbiome profile in obesity: a systematic review, Int. J. Endocrinol. 2018 (2018) 1-9. http://dx.doi.org/10.1155/2018/4095789.

[20]

K.L. Alexander, S.R. Targan, C.O. Elson Ⅲ, Microbiota activation and regulation of innate and adaptive immunity, Immunol. Rev. 260 (2014) 206-220. http://dx.doi.org/10.1111/imr.12180.

[21]

Y. Belkaid, T.W. Hand, Role of the microbiota in immunity and inflammation, Cell 157 (2014) 121-141. http://dx.doi.org/10.1016/j.cell.2014.03.011.

[22]

L. Koidl, E. Untersmayr, The clinical implications of the microbiome in the development of allergy diseases, Exp. Rev. Clin. Immu. 17 (2021) 115-126. https://doi.org/10.1080/1744666X.2021.1874353.

[23]

J.R. Marchesi, D.H. Adams, F. Fava, et al., The gut microbiota and host health: a new clinical frontier, Gut 65 (2016) 330. http://dx.doi.org/10.1136/gutjnl-2015-309990.

[24]

A. Alam, A. Neish, Role of gut microbiota in intestinal wound healing and barrier function, Tissue Barriers 6 (2018) 1539595. https://doi.org/10.1080/21688370.2018.1539595.

[25]

S.P. Spencer, G.K. Fragiadakis, J.L. Sonnenburg, Pursuing human-relevant gut microbiota-immune interactions, Immunity 51 (2019) 225-239. https://doi.org/10.1016/j.immuni.2019.08.002.

[26]

J.L. Round, S.K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and disease, Nat. Rev. Immunol. 9 (2009) 313-323. http://dx.doi.org/10.1038/nri2614.

[27]

N. ARPAIA, C. CAMPBELL, X. FAN, et al., Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation, Nature 504 (2013) 451-455. http://dx.doi.org/10.1038/nature12726.

[28]

A.B. Blázquez, M.C. Berin, Microbiome and food allergy, Translational Research 179 (2017) 199-203. http://dx.doi.org/10.1016/j.trsl.2016.09.003.

[29]

B. Cukrowska, J.B. Bierła, M. Zakrzewska, et al., The relationship between the infant gut microbiota and allergy. The role of Bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life, Nutrients 12 (2020) 946. http://dx.doi.org/10.3390/nu12040946.

[30]

M. Fazlollahi, Y. Chun, A. Grishin, et al., Early-life gut microbiome and egg allergy, Allergy 73 (2018) 1515-1524. http://dx.doi.org/10.1111/all.13389.

[31]

R.S. Chinthrajah, J.D. Hernandez, S.D. Boyd, et al., Molecular and cellular mechanisms of food allergy and food tolerance, J. Allergy Clin. Immunol. 137 (2016) 984-997. http://dx.doi.org/10.1016/j.jaci.2016.02.004.

[32]

H. Wu, E. Esteve, V. Tremaroli, et al., Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug, Nat. Med. 23 (2017) 850-858. http://dx.doi.org/10.1038/nm.4345.

[33]

M.C. Arkan, The intricate connection between diet, microbiota, and cancer: a jigsaw puzzle, Semin. Immunol. 32 (2017) 35-42. http://dx.doi.org/10.1016/j.smim.2017.08.009.

[34]

M. Kang, A. Martin, Microbiome and colorectal cannravellingeling host-microbiota interactions in colitis-associated colorectal cancer development, Semin. Immunol. 32 (2017) 3-13. http://dx.doi.org/10.1016/j.smim.2017.04.003.

[35]

M. Salameh, Z. Burney, N. Mhaimeed, et al., The role of gut microbiota in atopic asthma and allergy, implications in the understanding of disease pathogenesis, Scand. J. Immunol. 91 (2020) e12855. http://dx.doi.org/10.1111/sji.12855.

[36]

C.D. Morffy Smith, M. GONG, A.K. Andrew, et al., Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome, EBioMedicine 44 (2019) 639-655. http://dx.doi.org/10.1016/j.ebiom.2019.05.052.

[37]

E. Nabizadeh, N.H. Jazani, M. Bagheri, et al., Association of altered gut microbiota composition with chronic urticaria, Ann. Allergy Asthma Immunol. 119 (2017) 48-53. http://dx.doi.org/10.1016/j.anai.2017.05.006.

[38]

J.E. Belizário, M. Napolitano. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches, Front. Microbiol. 6 (2015) 1050. http://dx.doi.org/10.3389/fmicb.2015.01050.

[39]

C.C. Chen, K.J. Chen, M.S. Kong, et al., Alterations in the gut microbiotas of children with food sensitization in early life, Pediatr. Allergy Immu. 27 (2016) 254-262. http://dx.doi.org/10.1111/pai.12522.

[40]

Z.L. Wang, J.H. Zhong, X.Y. Meng, et al., The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy, Trends in Food Science and Technology 114 (2021) 116-132. https://doi.org/10.1016/j.tifs.2021.05.021.

[41]

M.R. Goldberg, H. Mor, D.M. Neriya, et al., Microbial signature in IgE-mediated food allergies, Genome Medicine 12 (2020) 92. https://doi.org/10.1186/s13073-020-00789-4.

[42]

R.B. Canani, F.D. Filippis, R. Nocerino, et al., Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow’s milk allergy, Sci. Rep. 8 (2018) 12500. http://dx.doi.org/10.1038/s41598-018-30428-3.

[43]

R.B. Canani, N. Sangwan, A.T. Stefka, et al., Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants, ISME J. 10 (2016) 742-750. http://dx.doi.org/10.1038/ismej.2015.151.

[44]

S. Bunyavanich, N. Shen, A. Grishin, et al., Early-life gut microbiome composition and milk allergy resolution, J. Allergy Clin. Immunol. 138 (2016) 1122-1130. http://dx.doi.org/10.1016/j.jaci.2016.03.041.

[45]

M.C. Arrieta, L.T. Stiemsma, P.A. Dimitriu, et al., Early infancy microbial and metabolic alterations affect risk of childhood asthma, Sci. Transl. Med. 7 (2015) 307ra152. http://dx.doi.org/10.1126/scitranslmed.aab2271.

[46]

X. Hua, J.J. Goedert, A. Pu, et al., Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project, EBioMedicine 3 (2016) 172-179. http://dx.doi.org/10.1016/j.ebiom.2015.11.038.

[47]

A.T. Stefka, T. Feehley, P. Tripathi, et al., Commensal bacteria protect against food allergen sensitization, PNAS 111 (2014) 13145-13150. http://dx.doi.org/10.1073/pnas.1412008111.

[48]

S. Liu, B. Yang, P. Yang, et al., Herbal formula-3 ameliorates OVA-induced food allergy in mice may via modulating the gut microbiota, Am. J. Transl. Res. 11 (2019) 5812-5823. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789213.

[49]

S.C. Diesner, C. Bergmayr, B. Pfitzner, et al., A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model, Clin. Immunol. 173 (2016) 10-18. http://dx.doi.org/10.1016/j.clim.2016.10.009.

[50]

S. Bunyavanich, M.C. Berin. Food allergy and the microbiome: current understandings and future directions, J. Allergy Clin. Immunol. 144 (2019) 1468-1477. http://dx.doi.org/10.1016/j.jaci.2019.10.019.

[51]

R. Sender, S. Fuchs, R. Milo, Revised estimates for the number of human and bacteria cells in the body, PLoS Biology 14 (2016) e1002533. http://dx.doi.org/10.1371/journal.pbio.1002533.

[52]

J.R. Brestoff, D. Artis, Commensal bacteria at the interface of host metabolism and the immune system, Nat. Immunol. 14 (2013) 676-684. http://dx.doi.org/10.1038/ni.2640.

[53]

J.H. Zhu, J.D. Xu, S.S. Zhou, et al., Differences in intestinal metabolism of ginseng between normal and immunosuppressed rats, Eur. J. Drug Metab. Pharmacokinet. 46 (2020) 93-104. http://dx.doi.org/10.1007/s13318-020-00645-1.

[54]

G. Shen, J. Wu, B.C. Ye, et al., Gut microbiota-derived Metabolites in the development of diseases, Can. J. Infect. Dis. Med. 2021 (2021) 1-7. https://doi.org/10.1155/2021/6658674.

[55]

C. Campbell, P.T. Mckenney, D. Konstantinovsky, et al., Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells, Nature 581 (2020) 475-479. http://dx.doi.org/10.1038/s41586-020-2193-0.

[56]

W.L. Xu, S. Ghosh, S.A.A. Comhair, et al., Increased mitochondrial arginine metabolism supports bioenergetics in asthma, J. Clin. Invest. 126 (2016) 2465-2481. https://doi.org/10.1172/JCI82925.

[57]

Y.S. Lee, T.Y. Kim, Y. Kim, et al., Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development, Cell Host and Microbe 24 (2018) 833-846. http://dx.doi.org/10.1016/j.chom.2018.11.002.

[58]

K. Makki, E.C. Deehan, J. Walter, et al., The impact of dietary fiber on gut microbiota in host health and disease, Cell Host and Microbe 23 (2018) 705-715. http://dx.doi.org/10.1016/j.chom.2018.05.012.

[59]

K.A. Krautkramer, J. Fan, F. Bäckhed. Gut microbial metabolites as multi-kingdom intermediates, Nat. Rev. Microbiol. 19 (2021) 77-94. http://dx.doi.org/10.1038/s41579-020-0438-4.

[60]

J.H. Cummings, E.W. Pomare, W.J. Branch, et al., Short chain fatty acids in human large intestine, portal, hepatic and venous blood, Gut 28 (1987) 1221-1227. http://dx.doi.org/10.1136/gut.28.10.1221.

[61]

C.A. Lopez, D.D. Kingsbury, E.M. Velazquez, et al., Collateral damage: microbiota-derived detabolites and immune function in the antibiotic era, Cell Host and Microbe 16 (2014) 156-163. http://dx.doi.org/10.1016/j.chom.2014.07.009.

[62]

M. Veldhoen, C. Ferreira, Influence of nutrient-derived metabolites on lymphocyte immunity, Nat. Med. 21 (2015) 709-718. http://dx.doi.org/10.1038/nm.3894.

[63]

X.J. Zheng, Y.P. Qiu, W. Zhong, et al., A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids, Metabolomics 9 (2013) 818-827. http://dx.doi.org/10.1007/s11306-013-0500-6.

[64]

A. Koh, F.D. VADDER, P. Kovatcheva-Datchary, et al., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell 165 (2016) 1332-1345. http://dx.doi.org/10.1016/j.cell.2016.05.041.

[65]

M. Aoyama, J. Kotani, M. Usami, Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways, Nutrition 26 (2010) 653-661. http://dx.doi.org/10.1016/j.nut.2009.07.006.

[66]

X.F. Chen, X. Chen, X. Tang, Short-chain fatty acid, acylation and cardiovascular diseases, Clin. Sci. 134 (2020) 657-676. http://dx.doi.org/10.1042/CS20200128.

[67]

T.L. Miller, M.J. Wolin, Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora, Appl. Environ. Microbiol. 62 (1996) 1589-1592. http://dx.doi.org/10.1128/AEM.62.5.1589-1592.1996.

[68]

N. Reichardt, S.H. Duncan, P. Young, et al., Phylogenetic distribution of three pathways for propionate production within the human gut microbiota, ISME J. 8 (2014) 1323-1335. http://dx.doi.org/10.1038/ismej.2014.48.

[69]

P. Louis, G.L. Hold, H.J. Flint. The gut microbiota, bacterial metabolites and colorectal cancer, Nat. Rev. Microbiol. 12 (2014) 661-672. http://dx.doi.org/10.1038/nrmicro3344.

[70]

S.E. Pryde, S.H. Duncan, G.L. Hold, et al., The microbiology of butyrate formation in the human colon, FEMS Microbiology Letters 217 (2002) 133-139. http://dx.doi.org/10.1016/S0378-1097(02)01106-0.

[71]

K.A. Lee-Sarwar, R.S. Kelly, J. Lasky-Su, et al., Fecal short-chain fatty acids in pregnancy and offspring asthma and allergic outcomes, J. Aller. Cl. Imm-pract. 8 (2020) 1100-1102. http://dx.doi.org/10.1016/j.jaip.2019.08.036.

[72]

C. Roduit, R. Frei, R. Ferstl, et al., High levels of butyrate and propionate in early life are associated with protection against atopy, Allergy 74 (2019) 799-809. http://dx.doi.org/10.1111/all.13660.

[73]

A. Cait, E. Cardenas, P.A. Dimitriu, et al., Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization, J. Allergy Clin. Immunol. 144 (2019) 1638-1647. http://dx.doi.org/10.1016/j.jaci.2019.06.029.

[74]

F. Fouhy, R.P. Ross, G.F. Fitzgerald, et al., Composition of the early intestinal microbiota, Gut Microbes 3 (2012) 203-220. http://dx.doi.org/10.4161/gmic.20169.

[75]

K. Honda, D.R. Littman, The microbiota in adaptive immune homeostasis and disease, Nature 535 (2016) 75-84. http://dx.doi.org/10.1038/nature18848.

[76]

J.M. Allaire, S.M. Crowley, H.T. Law, et al., The intestinal epithelium: central coordinator of mucosal immunity, Trends in Immunology 39 (2018) 677-696. http://dx.doi.org/10.1016/j.it.2018.04.002.

[77]

O.I. Iweala, A.W. Burks, Food Allergy: Our evolving understanding of its pathogenesis, prevention, and treatment, Curr. Allergy Asthma Rep. 16 (2016) 37. http://dx.doi.org/10.1007/s11882-016-0616-7.

[78]

Y. Feng, Y. Wang, P. Wang, et al., Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy, Cellular Physiol. Biochem. 49 (2018) 190-205. http://dx.doi.org/10.1159/000492853.

[79]

N.B. Paassen, A. Vincent, P.J. Patrycja, et al., The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection, Biochem. J. 420 (2009) 211-219. http://dx.doi.org/10.1042/BJ20082222.

[80]

C.J. Kelly, L. Zheng, E.L. Campbell, et al., Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function, Cell Host and Microbe 17 (2015) 662-671. http://dx.doi.org/10.1016/j.chom.2015.03.005.

[81]

Y. Zhao, F. Chen, W. Wu, et al., GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3, Mucosal Immunology 11 (2018) 752-762. http://dx.doi.org/10.1038/mi.2017.118.

[82]

B.A. Alhamwe, S. Miethe, E.P.V. Strandmann, et al., Epigenetic regulation of airway epithelium immune functions in asthma, Front. Immunol. 11 (2020) 1747. http://dx.doi.org/10.3389/fimmu.2020.01747.

[83]

S.D. Kivit, M.C. Tobin, C.B. Forsyth, et al., Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics, Front. Immunol. 5 (2014) 60. http://dx.doi.org/10.3389/fimmu.2014.00060.

[84]

C.A. Thaiss, N. Zmora, M. Levy, et al., The microbiome and innate immunity, Nature 535 (2016) 65-74. http://dx.doi.org/10.1038/nature18847.

[85]

L. Macia, J. Tan, A.T. Vieira, et al., Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome, Nat. Commun. 6 (2015) 6734. http://dx.doi.org/10.1038/ncomms7734.

[86]

M. Merad, P. Sathe, J. Helft, et al., The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting, Annu.Rev.Immunol. 31 (2013) 563-604. http://dx.doi.org/10.1146/annurev-immunol-020711-074950.

[87]

T. Feehley, C.R. Nagler, Cellular and molecular pathways through which commensal bacteria modulate sensitization to dietary antigens, Curr. Opin. Immunol. 31 (2014) 79-86. http://dx.doi.org/10.1016/j.coi.2014.10.001.

[88]

W. Wu, M. Sun, F. Chen, et al., Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43, Mucosal Immunol. 10 (2017) 946-956. http://dx.doi.org/10.1038/mi.2016.114.

[89]

A. Trompette, E.S. Gollwitzer, K. Yadava, et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis, Nat. Med. 20 (2014) 159-166. http://dx.doi.org/10.1038/nm.3444.

[90]

J. Tan, C. Mckenzie, J.V. Peter, et al., Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways, Cell Rep. 15 (2016) 2809-2824. http://dx.doi.org/10.1016/j.celrep.2016.05.047.

[91]

N. Singh, A. Gurav, S. Sivaprakasam, et al., Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity 40 (2014) 128-139. http://dx.doi.org/10.1016/j.immuni.2013.12.007.

[92]
R.S. Longman, M. Metz, D. Artis, Innate lymphoid cells for the control of mucosal immunity, in: H. Kiyono, D.W. Pascual (Eds.), Mucosal Vaccines, Academic Press, New York, 2019, pp. 229-245. https://doi.org/10.1016/B978-0-12-811924-2.00014-6.
[93]
A. Laurence, M Aringer, Effector mechanisms in autoimmunity, in: N.R. Rose, I.R. Mackay (Eds.), The autoimmune diseases, Academic Press, New York, 2020, pp. 319-329. https://doi.org/10.1016/B978-0-12-812102-3.00018-X.
[94]
K.B. Elkon, C. Lood, The innate immune system in SLE, in: D.J. Wallace, B.H. Hahn (Eds.), Dubois’ lupus erythematosus and related syndromes, Elsevier, Amsterdam, 2019, pp. 93-100. https://doi.org/10.1016/B978-0-323-47927-1.00008-6.
[95]
B.L. Kee. Development of natural killer cells and ILC1, in: M.J.H. Ratcliffe, (Eds.), Encyclopedia of immunobiology, Academic Press, New York, 2016, pp. 140-148. http://dx.doi.org/10.1016/B978-0-12-374279-7.04002-9.
[96]

M. Colonna, Innate Lymphoid Cells: Diversity, plasticity, and unique functions in Immunity, Immunity 48 (2018) 1104-1117. https://doi.org/10.1016/j.immuni.2018.05.013.

[97]

C.S.N. Klose, M. Flach, L. Möhle, et al., Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages, Cell 157 (2014) 340-356. http://dx.doi.org/10.1016/j.cell.2014.03.030.

[98]

G.F. Sonnenberg, D. Artis, Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease, Immunity 37 (2012) 601-610. http://dx.doi.org/10.1016/j.immuni.2012.10.003.

[99]

M. Cella, A. Fuchs, W. Vermi, et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity, Nature 457 (2009) 722-725. http://dx.doi.org/10.1038/nature07537.

[100]

S.M. Gordon, J. Chaix, L.J. Rupp, et al., The transcription factors T-bet and eomes control key checkpoints of natural killer cell maturation, Immunity 36 (2012) 55-67. http://dx.doi.org/10.1016/j.immuni.2011.11.016.

[101]

S.C. Ganal, S.L. Sanos, C. Kallfass, et al., Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota, Immunity 37 (2012) 171-186. http://dx.doi.org/10.1016/j.immuni.2012.05.020.

[102]

S. Sawa, M. Lochner, N. Satoh-Takayama, et al., RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota, Nat. Immunol. 12 (2011) 320-326. http://dx.doi.org/10.1038/ni.2002.

[103]

M.R. Hepworth, L.A. Monticelli, T.C. Fung, et al., Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria, Nature 498 (2013) 113-117. http://dx.doi.org/10.1038/nature12240.

[104]

N.K. Crellin, S. Trifari, C.D. Kaplan, et al., Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells by toll-like receptor 2, Immunity 33 (2010) 752-764. http://dx.doi.org/10.1016/j.immuni.2010.10.012.

[105]

S. Chaushu, A. Wilensky, C. Gur, et al., Direct recognition of Fusobacterium nucleatum by the NK cell natural cytotoxicity receptor NKp46 aggravates periodontal disease, PLoS Pathog 8 (2012) e1002601. http://dx.doi.org/10.1371/journal.ppat.1002601.

[106]

S.H. Kim, B.H. Cho, H. Kiyono, et al., Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer’s patches, Sci. Rep. 7 (2017) 3980. http://dx.doi.org/10.1038/s41598-017-02729-6.

[107]

F.V. Wijk, H. Cheroutre, Mucosal T cells in gut homeostasis and inflammation, Exp. Rev. Clin. Immu. 6 (2010) 559-566. http://dx.doi.org/10.1586/ECI.10.34.

[108]

Y. Wang, J. Sun, L. Xue, et al., L-arabinose attenuates gliadin-induced food allergy via regulation of Th1/Th2 balance and upregulation of regulatory T Cells in mice, J. Agric. Food Chem. 69 (2021) 3638-3646. https://doi.org/10.1021/acs.jafc.0c07167.

[109]

J. Park, M. Kim, S.G. Kang, et al., Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway, Mucosal Immunology 8 (2015) 80-93. http://dx.doi.org/10.1038/mi.2014.44.

[110]

W. Yang, T. Yu, X. Huang, et al., Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity, Nat.e Commun. 11 (2020) 4457. https://doi.org/10.1038/s41467-020-18262-6.

[111]

T.L. Ai, B.D. Solomon, C.S. Hsieh, T-cell selection and intestinal homeostasis, Immunol. Rev. 259 (2014) 60-74. http://dx.doi.org/10.1111/imr.12171.

[112]

A. Nakajima, N. Kaga, Y. Nakanishi, et al., Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice, J. Immunol. 199 (2017) 3516-3524. http://www.jimmunol.org/content/199/10/3516.

[113]

K. Atarashi, T. Tanoue, T. Shima, et al., Induction of colonic regulatory T cells by indigenous Clostridium species, Science 331 (2011) 337-341. http://dx.doi.org/10.1126/science.1198469.

[114]

P. Satitsuksanoa, W.V.D. Veen, M. Akdis., B cells in food allergy, J. Allergy Clin. Immunol. 147 (2021) 49-51. https://doi.org/10.1016/j.jaci.2020.11.014.

[115]

R. Jiménez-saiz, D.K. Chu, T.S. Mandur, et al., Lifelong memory responses perpetuate humoral Th2 immunity and anaphylaxis in food allergy, J. Allergy Clin. Immunol. 140 (2017) 1604-1615.e5. http://dx.doi.org/10.1016/j.jaci.2017.01.018.

[116]

M. Kim, Y. Qie, J. Park, et al., Gut microbial metabolites fuel host antibody responses, Cell Host and Microbe 20 (2016) 202-214. http://dx.doi.org/10.1016/j.chom.2016.07.001.

[117]

E. Mariño, J.L. Richards, K.H. Mcleod, et al., Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes, Nat. Immunol. 18 (2017) 552-562. http://dx.doi.org/10.1038/ni.3713.

[118]

H.N. Sanchez, J.B. Moroney, H. Gan, et al., B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids, Nat. Commun. 11 (2020): 60. https://doi.org/10.1038/s41467-019-13603-6.

[119]

M. Luu, S. Pautz, V. Kohl, et al., The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes, Nat. Commun. 10 (2019) 760. https://doi.org/10.1038/s41467-019-08711-2.

[120]

M. Luu, H. Monning, A. Visekruna, Exploring the molecular mechanisms underlying the protective effects of microbial SCFAs on intestinal tolerance and food allergy, Front. Immunol. 11 (2020) 1225. http://dx.doi.org/10.3389/fimmu.2020.01225.

[121]

R.A. Hoh, S.A. Joshi, J.Y. Lee, et al., Origins and clonal convergence of gastrointestinal IgE+ B cells in human peanut allergy, Sci. Immun. 5 (2020) eaay4209. http://dx.doi.org/10.1126/sciimmunol.aay4209.

[122]

S.J. Galli, M. Tsai, IgE and mast cells in allergic disease, Nat. Med. 18 (2012) 693-704. http://dx.doi.org/10.1038/nm.2755.

[123]

H. Zhang, M. Du, Q. Yang, et al., Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase, J. Nut. Biochem. 27 (2016) 299-306. http://dx.doi.org/10.1038/nm.2755.

[124]

C.C. Wang, H. Wu, F.H. Lin, et al., Sodium butyrate enhances intestinal integrity, inhibits mast cell activation, inflammatory mediator production and JNK signaling pathway in weaned pigs, Innate Immunity 24 (2018) 40-46. http://dx.doi.org/10.1177/1753425917741970.

[125]

J. Folkerts, F. Redegeld, G. Folkerts, et al., Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling, Allergy 75 (2020) 1966-1978. http://dx.doi.org/10.1111/all.14254.

[126]

W. Wu, H.P. Liu, F. Chen, et al., Commensal A4 bacteria inhibit intestinal Th2-cell responses through induction of dendritic cell TGF-β production, Eur. J. Immunol. 46 (2016) 1162-1167. http://dx.doi.org/10.1002/eji.201546160.

[127]

M.M.M. Kaisar, L.R. Pelgrom, A.J.V.D. Ham, et al., Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109a signaling, Front. Immunol. 8 (2017) 1429. http://dx.doi.org/10.3389/fimmu.2017.01429.

[128]

Y. Furusawa, Y. Obata, S. Fukuda, et al., Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature 504 (2013) 446-450. http://dx.doi.org/10.1038/nature12721.

[129]

B.H. Gu, M. Kim, C.H. Yun, Regulation of gastrointestinal immunity by metabolites, Nutrients 13 (2021) 167. https://doi.org/10.3390/nu13010167.

Food Science and Human Wellness
Pages 702-710
Cite this article:
Chen C, Liu C, Zhang K, et al. The role of gut microbiota and its metabolites short-chain fatty acids in food allergy. Food Science and Human Wellness, 2023, 12(3): 702-710. https://doi.org/10.1016/j.fshw.2022.09.003

725

Views

36

Downloads

18

Crossref

17

Web of Science

0

Scopus

1

CSCD

Altmetrics

Received: 07 July 2021
Revised: 10 September 2021
Accepted: 09 November 2021
Published: 15 October 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return