AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Purification and immunoglobulin E epitopes identification of low molecular weight glutenin: an allergen in Chinese wheat

Yanbo WangaYihang TongaJinru ZhouaDong YangbLinglin Fua( )
Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

As one of the most important cereals, wheat (Triticum aestivum) has high nutritional value and is widely cultivated in China. However, wheat can cause severe allergic reactions, and a growing number of people are developing allergies to Chinese wheat. Low molecular weight glutenin (LMW-GS), an important allergen in susceptible populations, is responsible for celiac disease and wheat contacts dermatitis. In this study, LMW-GS was highly purified from Chinese wheat (Xiaoyan 6) and further identified and characterized. In addition, 8 peptides were predicted efficiently by 5 immunological tools, among which five peptides showed significant immunoglobulin E (IgE) binding abilities. Two specific epitopes were found to be in the non-conserved region of the amino acid sequence of LMW-GS, which was speculated to be the specific epitope of Chinese wheat. This systematic research of LMW-GS may provide new insights into the prevention of wheat allergy and development of hypoallergenic wheat products.

References

[1]

S.E. Emmett, F.J. Angus, J.S. Fry, et al., Perceived prevalence of peanut allergy in Great Britain and its association with other atopic conditions and with peanut allergy in other household members, Allergy 54 (4) (2015) 380-385. http://dx.doi.org/10.1034/j.1398-9995.1999.00768.x.

[2]

C. Vebter, B. Pereira, J. Grundy, et al., Prevalence of sensitization reported and objectively assessed food hypersensitivity amongst six‐year‐old children: a population‐based study, Pediat Allerg IMM-UK. 17 (5) (2006) 356-363. http://dx.doi.org/10.1016/j.jaci.2003.12.535.

[3]

B. Lebwohl, J.F. Ludvigsson, P.H.R. Green, et al., Celiac disease and non-celiac gluten sensitivity, BMJ 351 (2015) h4347. http://dx.doi.org/10.1136/bmj.h4347.

[4]

W. Wen, Wheat is the biggest cluprit of Chinese allergy, Family medicine, 2016.

[5]

J. Osborne, B. Thomas, The Vegetable Proteins, Longmans, Green and Co, 1924.

[6]

L. Li, M. Tatsuya, B. Gerard, et al., Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat, BMC Plant Biology 10 (1) (2010) 1-24. http://dx.doi.org/10.1186/1471-2229-10-124.

[7]

N. Maruyama, T. Kishimoto, S. Kawase, et al., Identification of major wheat allergens by means of the Escherichia coli expression system, Eur. J. Biochem. 255 (3) (2010) 739-745. http://dx.doi.org/10.1046/j.1432-1327.1998.2550739.x.

[8]

R.B. Gupta, K.W. Shepherd, Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin, Theo. Applied Genet. 80 (1) (1990) 65-74. http://dx.doi.org/10.1007/BF00224017.

[9]

W.H. Vensel, F.M. Dupont, S. Sloane et al., Effect of cleavage enzyme, search algorithm and decoy database on mass spectrometric identification of wheat gluten protein, Phytochemistry 72 (10) (2011) 1154-1161. http://dx.doi.org/10.1016/j.phytochem.2011.01.002.

[10]

R.B. Gupta, F. Macritchie, A rapid one-step one-dimensional SDS-PAGE procedure for analysis of subunit composition of glutenin in wheat, J. Cereal. Sci. 14 (2) (1991) 105-109. http://dx.doi.org/10.1016/S0733-5210(09)80130-6.

[11]

H. Wieser, W. Seilmeier, H.D. Belitz, et al., Characterization of ethanol-extractable reduced subunits of glutenin separated by reversed-phase high-performance liquid chromatography, J. Cereal. Sci. 12 (1) (1990) 63-71. http://dx.doi.org/10.1016/S0733-5210(09)80158-6.

[12]

F.M. Dupont, R. Chan, R. Lopez, et al., Sequential extraction and quantitative recovery of gliadins, glutenins, and other proteins from small samples of wheat flour, J. Agric. Food Chem. 53 (5) (2005) 1575-1584. http://dx.doi.org/10.1021/jf048697l.

[13]

P. Dangi, B.S. Khatkar, Extraction and purification of low molecular weight glutenin subunits using size exclusion chromatography. J. Food Sci. Tech. Mys. 56(2) (2019) 951-956. http://dx.doi.org/10.1007/s13197-018-03560-1.

[14]

L.A.N. Willison, Q. Zhang, M. Su, et al., Conformational epitope mapping of Pru du 6, a major allergen from almond nut, Mol. Immunol. 55 (3/4) (2013) 253-263. http://dx.doi.org/10.1016/j.molimm.2013.02.004.

[15]

J. Snégaroff, G. Branlard, I. Bouchez-Mahiout, et al., Recombinant proteins and peptides as tools for studying IgE reactivity with low-molecular-weight glutenin subunits in some wheat allergies, J. Agr. Food Chem. 55 (24) (2017) 9837-9845. http://dx.doi.org/10.1021/jf071432x.

[16]

W. Hof, F. Milligen, M. Berg, et al., Epitope mapping of the cat (Felis domesticus) major allergen Fel d I by overlapping synthetic peptides and monoclonal antibodies against native and denatured Fel d I, Allergy 48 (4) (2010) 255-263. http://dx.doi.org/10.1111/j.1398-9995.1993.tb00725.x.

[17]

J. Pande, M.M. Szewczyk, A.K. Grover, et al., Phage display: concept, innovations, applications and future, Biotechnol. Adv. 28 (6) (2010) 849-858. http://dx.doi.org/10.1016/j.biotechadv.2010.07.004.

[18]

T.E. Kim, S.W. Park, N.Y. Cho, et al., Quantitative measurement of serum allergen-specific IgE on protein chip, Exp. Mol. Med. 34 (2) (2002) 152-158. http://dx.doi.org/10.1038/emm.2002.22.

[19]

I. Ovidiu, C.H. Schein, B. Werner, et al., SDAP: database and computational tools for allergenic proteins, Nucleic Acids Res. 31 (1) (2003) 359. http://dx.doi.org/10.1093/nar/gkg010.

[20]

X.R. Lu, H. Zhang, L.L.Ou Yang, Research progress of wheat protein allergens, J. Food Saf. Food Qua. 2015. http://dx.doi.org/10.19812/j.cnki.jfsq11-5956/ts.2015.07.071.

[21]

M. James, C. Kidd, H. Steven, et al., Food-dependent exercise-induced anaphylaxis, J. Allergy Clin. Immun. 71 (1983) 407. http://dx.doi.org/10.1016/0091-6749(83)90070-2.

[22]

F. Battais, F. Pineau, Y. Popineau, et al., Food allergy to wheat: identification of immunogloglin E and immunoglobulin G‐binding proteins with sequential extracts and purified proteins from wheat flour, Clin. Exp. Allergy. 33 (7) (2010) 962-970. http://dx.doi.org/10.1046/j.1365-2222.2003.01592.x.

[23]

S. Denery-Papini, M. Bodinier, F. Pineau, et al., Immunoglobulin-E-binding epitopes of wheat allergens in patients with food allergy to wheat and in mice experimentally sensitized to wheat proteins, Clin. Exp. Allergy. 41 (10) (2011) 1478-1492. http://dx.doi.org/10.1111/j.1365-2222.2011.03808.x.

[24]

I.M. Verbriuggen, W.S. Veraverbeke, A. Vandamme, et al., Simultaneous isolation of wheat high molecular weight and low molecular weight glutenin subunits, J. Cereal Sci. 28 (1) (1998) 25-32. http://dx.doi.org/10.1006/jcrs.1998.0187.

[25]

S.P. Roels, J.A. Delcour, evidence for the non-glycoprotein nature of high molecular weight glutenin subunits of wheat, J. Cereal Sci. 24 (3) (1996) 227-239. http://dx.doi.org/10.1006/jcrs.1996.0055.

[26]

S.E. Duan, Y.S. Ruan, W.M. Zhao, et al., Subunit compositions of low molecular weight glutenins of wheat, Acta Botanica Boreali-occidentalia Sinica 25 (4) (2005) 719-722. http://dx.doi.org/10.3321/j.issn:1000-4025.2005.04.015.

[27]

L. Whitmore, B.A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases, Biopolymers 89 (5) (2008). http://dx.doi.org/10.1002/bip.20853.

[28]

Q.H. Zhang, X.Q. Huang, M.Y. Li, et al., Study on secondary structure of meat protein by FTIR, Food and Fermentation Industries 2015. http://dx.doi.org/10.13995/j.cnki.11-1802/ts.201510045.

[29]

N. Giamblanco, G. Zhavnerko, N.Tuccitto, et al., Coadsorption-dependent orientation of fibronectin epitopes at hydrophilic gold surfaces, Soft Matter. 8 (32) (2012) 8370. http://dx.doi.org/10.1039/c2sm25490e.

[30]

H. Tschesche, Modern methods in protein- and nucleic acid research. de Gruyter, Berlin, 1990. https://doi.org/10.1002/ange.19921040350.

[31]

W. Zheng, C. Zhang, H. Michelle, et al., An ensemble method for prediction of conformational B-cell epitopes from antigen sequences, Comput. Biol. Chem. 49 (49C) (2014) 51-58. http://dx.doi.org/10.1016/j.compbiolchem.2014.02.002.

[32]

G.B. Cornish, B. Frank, H.M.Allen, et al., Flour proteins linked to quality traits in an Australian doubled haploid wheat population, Aust. J. Agr. Res. 52 (2001) 1339-1348. http://dx.doi.org/10.1071/ar01060.

[33]

E.V. Metakovsky, C.W. Wrigley, R.B. Gupta, et al., Gluten polypeptides as useful genetic markers of dough quality in Australian wheats, Aust. J. Agr. Res. 41 (1990). http://dx.doi.org/10.1071/ar9900289.

[34]

M. Watanabe, T. Suzuki, Z. Ikezawa, et al., Controlled enzymatic treatment of wheat proteins for production of hypoallergenic flour, Biosci. Biotech. Bioch. 58(2) (1994) 388-390. http://dx.doi.org/10.1271/bbb.58.388.

[35]

S. Tanabe, S. Arai, Y. Yanagihara, et al., A major wheat allergen has a Gln-Gln-Gln-Pro-Pro motif identified as an IgE-binding epitope, Biochem. Bioph. Res. Co. 219(2) (1996) 290-293. http://dx.doi.org/10.1006/bbrc.1996.0225.

[36]

N.E. Pogna, J.C. Autran, F. Mellini, et al., Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength, J. Cereal Sci. 11 (1) (1990) 15-34. http://dx.doi.org/10.1016/S0733-5210(09)80178-1.

[37]

M. Ruiz, J.M. Carrillo, Linkage relationships between prolamin genes on chromosomes 1A and 1B of durum wheat, Tag. 87 (3) (1993) 353. http://dx.doi.org/10.1007/BF01184923.

[38]

S. Fisichella, A. Savarino, Conformational studies of glutenin polymers from different wheat cultivars by circular dichroism spectroscopy, Protein Peptide Lett. 14(8) (2007) 784-787. http://dx.doi.org/10.2174/092986607781483723.

[39]

A.S. Tatham, P.R. Shewry, B.J. Miflin, et al., Wheat gluten elasticity: a similar molecular basis to elastin, Febs. Lett. 177(2) (1984) 205-208. http://dx.doi.org/10.1016/0014-5793(84)81284-3.

[40]

N.H. Thomson, M.J. Miles, A.S. Tatham, et al., Molecular images of cereal proteins by STM, Ultramicroscopy 42-44 (1992) 1204-1213. http://dx.doi.org/10.1016/0304-3991(92)90425-J.

[41]

S. Pfeifer, M. Bublin, P. Dubiela, et al., Cor a 14, the allergenic 2S albumin from hazelnut, is highly thermostable and resistant to gastrointestinal digestion, Mol. Nutr. Food Res. 59 (2015) 2077-2086. http://dx.doi.org/10.1002/mnfr.201500071.

Food Science and Human Wellness
Pages 720-727
Cite this article:
Wang Y, Tong Y, Zhou J, et al. Purification and immunoglobulin E epitopes identification of low molecular weight glutenin: an allergen in Chinese wheat. Food Science and Human Wellness, 2023, 12(3): 720-727. https://doi.org/10.1016/j.fshw.2022.09.005

587

Views

41

Downloads

2

Crossref

2

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 December 2020
Revised: 13 January 2021
Accepted: 30 January 2021
Published: 15 October 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return