AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Selection of specific nanobodies against peanut allergen through unbiased immunization strategy and the developed immuno-assay

Yaozhong Hua,1Chuan Zhangb,1Jing LinaYi WangaSihao WuaYing SunbBowei ZhangaHuan LüaXuemeng JiaYang LubShuo Wanga( )
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China

1 These authors contribute equally.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

Peanut allergy is considered to be a major health issue with global effects. To date, no effective curative approach has been applied for the therapy of the anaphylaxis resulting from the peanut allergens. The accurate and effective detection methods for the surveillance of allergens in food are still the primary strategies to avoid allergic diseases. In this study, nanobodies (Nbs) derived from the Heavy-Chain only Antibodies (HCAbs) were selected against the general peanut protein extract through the unbiased strategy to facilitate the development of the sandwich ELISA for the detection and surveillance of peanut allergen contamination. The target antigen of the selected Nb was identified as peanut allergen Ara h 3, and a cross-reaction was observed with the member of Gly 1 from the Ara h 3 family. The applicability of the self-paired Nb P43 on the establishment of the immuno-assay was verified. A sandwich ELISA against peanut allergen was developed, which reached a linear range of 0.2-10.6 μg/mL, and a limit of detection of 53.13 ng/mL.

References

[1]
J.P. Davis, L.L. Dean, Chapter 11 - Peanut composition, flavor and nutrition, in Peanuts. H.T. Stalker, R.F. Wilson (Eds.), AOCS Press, Elsevier Inc., New York, 2016, pp. 289-345.
[2]

J.P. Moreno, J. Craig, E. Abeer, et al., Peanut consumption in adolescents is associated with improved weight status, Nutr. Res. 33(7) (2013) 552-556. https://doi.org/10.1016/j.nutres.2013.05.005.

[3]

C.H. Palladino, H. Breiteneder, Peanut allergens, Mol. Immunol. 100 (2018) 58-70. https://doi.org/10.1016/j.molimm.2018.04.005.

[4]

S. Lefèvre, S. Jacquenet, G. Kanny, Diagnostic de l’allergie alimentaire à l’arachide, Revue Française d’Allergologie. 56(1) (2016) 20-28. https://doi.org/10.1016/j.reval.2015.09.010.

[5]

S.H. Sicherer, H.A. Sampson, Peanut allergy: Emerging concepts and approaches for an apparent epidemic, J. Allergy Clin. Immun. 120(3) (2007) 491-503. https://doi.org/10.1016/j.jaci.2007.07.015.

[6]

S.H. Sicherer, A. Muñoz-Furlong, H.A. Sampson, Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: A 5-year follow-up study, J. Allergy Clin. Immun. 112(6) (2003) 1203-1207. https://doi.org/10.1016/S0091-6749(03)02026-8.

[7]

J.W. Yunginger, S.G. Kristin, S.Q. William, et al., Fatal Food-Induced Anaphylaxis, JAMA. 260(10) (1988) 1450-1452. https://doi.org/10.1001/jama.1988.03410100140041.

[8]

H.S. Skolnick, M.K. Conover-Walker, C.B. Koerner, et al., The natural history of peanut allergy, J. Allergy Clin. Immun. 107(2) (2001) 367-374. https://doi.org/10.1067/mai.2001.112129.

[9]

A.W. Burks, G. Cockrell, J.S. Stanley, et al., Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity, J. Clin. Invest. 96(4) (1995) 1715-1721. https://doi.org/10.1172/JCI118216.

[10]

O.M. Viquez, C.G. Summer, H.W. Dodo, Isolation and molecular characterization of the first genomic clone of a major peanut allergen, Ara h 2, J. Allergy Clin. Immun. 107(4) (2001) 713-717. https://doi.org/10.1067/mai.2001.113522.

[11]

P. Rabjohn, E.M. Helm, J.S. Stanley, et al., Molecular cloning and epitope analysis of the peanut allergen Ara h 3, J. Clin. Invest. 103(4) (1999) 535-542. https://doi.org/10.1172/JCI5349.

[12]

P. Restani, C. Ballabio, E. Corsini, et al., Identification of the basic subunit of Ara h 3 as the major allergen in a group of children allergic to peanuts, Ann. Allergy Asthma Immunol. 94(2) (2005) 262-266. https://doi.org/10.1016/S1081-1206(10)61306-3.

[13]

S.H. Sicherer, H.A. Sampson, Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment, J. Allergy Clin. Immun. 133(2) (2014) 291-307. https://doi.org/10.1016/j.jaci.2013.11.020.

[14]

M.R. Perkin, A. Togias, J. Koplin, et al., Food allergy prevention: more than peanut, J. Alller. Cl. Imm-pract. 8(1) (2020) 1-13. https://doi.org/10.1016/j.jaip.2019.11.002.

[15]

F. Speroni, L. Elviri, M. Careri, et al., Magnetic particles functionalized with PAMAM-dendrimers and antibodies: a new system for an ELISA method able to detect Ara h3/4 peanut allergen in foods, Anal. Bioanal. Chem. 397(7) (2010) 3035-3042. https://doi.org/10.1007/s00216-010-3851-0.

[16]

M. Careri, A. Costa, L. Elviri, et al., Use of specific peptide biomarkers for quantitative confirmation of hidden allergenic peanut proteins Ara h 2 and Ara h 3/4 for food control by liquid chromatography-tandem mass spectrometry, Anal. Bioanal. Chem. 389(6) (2007) 1901-1907. https://doi.org/10.1007/s00216-007-1595-2.

[17]

A. Pomés, R.M. Helm, G.A. Bannon, et al., Monitoring peanut allergen in food products by measuring Ara h 1, J. Allergy Clin. Immun. 111(3) (2003) 640-645. https://doi.org/10.1067/mai.2003.118.

[18]

O. Stephan, S. Vieths, Development of a real-tTime PCR and a 是andwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods, J. Agr. Food Chem. 52(12) (2004) 3754-3760. https://doi.org/10.1021/jf035178u.

[19]

J. Peng, S.S. Song, L.G. Xu, et al., Development of a monoclonal antibody-based sandwich ELISA for peanut allergen Ara h1 in food, Int. J. Env. Res. Pub. He. 10(7) (2013) 2897-2905. https://doi.org/10.3390/ijerph10072897.

[20]

B.K. Hurlburt, D. Schmitt, T.G. Isleib, et al., Production of pure protein and antibodies and development of immunoassays to detect Ara h 3 levels in peanut varieties, Int. J. Food Sci. Tech. 46(7) (2011) 1477-1484. https://doi.org/10.1111/j.1365-2621.2011.02645.x.

[21]

D. Saerens, M. Pellis, R. Loris, et al., Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies, J. Mol. Biol. 352(3) (2005) 597-607. https://doi.org/10.1016/j.jmb.2005.07.038.

[22]

M. Zhu, X. Gong, Y.H. Hu, et al., Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1, J. Transl. Med. 12 (1) (2014) 352. https://doi.org/10.1186/s12967-014-0352-5.

[23]

C. Hamers-Casterman, T. Atarhouch, S. Muyldermans, et al., Naturally occurring antibodies devoid of light chains, Nature 363 (6428) (1993) 446-448. https://doi.org/10.1038/363446a0.

[24]

S. Muyldermans, T.N. Baral, V.C. Retamozzo, et al., Camelid immunoglobulins and nanobody technology, Vet. Immunol. Immunop. 128(1) (2009) 178-183. https://doi.org/10.1016/j.vetimm.2008.10.299.

[25]

S. Muyldermans, Nanobodies: Natural single-domain antibodies, Annu. Rev. Biochem. 82 (2013) 775-797. https://doi.org/10.1146/annurev-biochem-063011-092449.

[26]

X. Liu, Y. Xu, Y.H. Xiong, et al., VHH phage-based competitive real-time immuno-polymerase chain reaction for ultrasensitive detection of ochratoxin A in cereal, Anal Chem. 86(15) (2014) 7471-7477. https://doi.org/10.1021/ac501202d.

[27]

P. Wang, G.H. Li, J.R. Yan, et al., Bactrian camel nanobody-based immunoassay for specific and sensitive detection of Cry1Fa toxin, Toxicon. 92 (2014) 186-192. https://doi.org/10.1016/j.toxicon.2014.10.024.

[28]

F. Chen, H. Ma, Y.L. Li, et al., Screening of nanobody specific for peanut major allergen Ara h 3 by phage display, J. Agr. Food Chem. 67(40) (2019) 11219-11229. https://doi.org/10.1021/acs.jafc.9b02388.

[29]

J. Yan, P.Y. Wang, M. Zhu, et al., Characterization and applications of Nanobodies against human procalcitonin selected from a novel naïve nanobody phage display library, J. Nanobiotechnol. 13(1) (2015) 33. https://doi.org/10.1186/s12951-015-0091-7.

[30]

G. Hassanzadeh-Ghassabeh, N. Devoogdt, P.D. Pauw, et al., Nanobodies and their potential applications, Nanomedicine-Uk. 8(6) (2013) 1013-1026. https://doi.org/10.2217/nnm.13.86.

[31]

O.Y. Dmitriev, S. Lutsenko, S. Muyldermans, Nanobodies as probes for protein dynamics in vitro and in cells, J. Biol. Chem. 291(8) (2016) 3767-3775. https://doi.org/10.1074/jbc.R115.679811.

[32]

M. Shu, Y. Xu, J.X. Dong, et al., Development of a noncompetitive idiometric nanobodies phage immumoassay for the determination of fumonisin B1, Food Agr. Immunol. 30(1) (2019) 510-521. https://doi.org/10.1080/09540105.2019.1604637.

[33]

M. Zhu, M. Li, G. Li, et al., Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline, Microchim. Acta. 182 (15) (2015) 2451-2459. https://doi.org/10.1007/s00604-015-1602-9.

[34]

J. Helma, M.C. Cardoso, S. Muyldermans, et al., Nanobodies and recombinant binders in cell biology, J. Cell Biol. 209 (5) (2015) 633-644. https://doi.org/10.1083/jcb.201409074.

[35]

C.M.Y. Lee, N. Iorno, F. Sierro, et al., Selection of human antibody fragments by phage display, Nat Protoc. 2(11) (2007) 3001-3008. https://doi.org/10.1038/nprot.2007.448.

[36]

R. Zeleny, H. Schimmel, Towards comparability of ELISA results for peanut proteins in food: A feasibility study, Food Chem. 123(4) (2010) 1343-1351. https://doi.org/10.1016/j.foodchem.2010.06.018.

Food Science and Human Wellness
Pages 745-754
Cite this article:
Hu Y, Zhang C, Lin J, et al. Selection of specific nanobodies against peanut allergen through unbiased immunization strategy and the developed immuno-assay. Food Science and Human Wellness, 2023, 12(3): 745-754. https://doi.org/10.1016/j.fshw.2022.09.008

646

Views

46

Downloads

8

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 29 December 2020
Revised: 26 January 2021
Accepted: 18 February 2021
Published: 15 October 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return