AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1,017.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Efficient reduction of β-lactoglobulin allergenicity in milk using Clostridium tyrobutyricum Z816

Qianru Zhaoa,bYuwei WangbZhengming ZhubQuanyu ZhaocLiying Zhud( )Ling Jiangb( )
College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, China
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Milk allergy is one of the most common food allergies, affecting 6% of young children, and β-lactoglobulin (β-LG) is the main milk allergen. Clostridium tyrobutyricum Z816 was selected for the degradation of β-LG, which was successfully reduced by about 90% using permeabilized bacteria under the optimized conditions. The hydrolyzed peptides were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and analyzed by molecular modeling, which indicated that C. tyrobutyricum Z816 could effectively degrade the antigenic epitopes of β-LG. Finally, the concentration and digestibility of β-LG in actual samples was quantified using enzyme-linked immunosorbent assay (ELISA) and gastrointestinal digestion simulation experiments. The results showed more than 92% of β-LG in actual samples was hydrolyzed, and the gastric and total digestibility of whey protein isolate (WPI) was improved by 85.96% and 64.51%, respectively. Therefore, C. tyrobutyricum Z816 offers an effective method to degrade β-LG and reduce the occurrence of milk allergies, which has great significance for the development of hypoallergenic dairy products.

References

[1]

A. Fiocchi, J. Brozek, H. Schünemann, et al., World Allergy Organization (WAO) diagnosis and rationale for action against cow's milk allergy (DRACMA) guidelines, Pediatr. Allergy Immunol. 3 (2010) 57-161. http://doi.org/10.1111/j.1399-3038.2010.01068.x.

[2]

M. Kondo, H. Kaneko, T. Fukao, et al., The response of bovine beta-lactoglobulin-specific T-cell clones to single amino acid substitution of T-cell core epitope, Pediatr. Allergy Immunol. 19 (2008) 592-598. http://doi.org/10.1111/j.1399-3038.2007.00704.x.

[3]

C. Keet, Recognition and management of food-induced anaphylaxis, Pediatr. Clin. North Am. 58 (2011) 377-388. http://doi.org/10.1016/j.pcl.2011.02.006.

[4]

M. Albrecht, Y. Kuhne, B.K. Ballmer-Weber, et al., Relevance of IgE binding to short peptides for the allergenic activity of food allergens, J. Allergy Clin. Immunol. 124 (2009) 328-336. http://doi.org/10.1016/j.jaci.2009.05.031.

[5]

K.C.M. Verhoeckx, Y.M. Vissers, J.L. Baumert, et al., Food processing and allergenicity, Food Chem. Toxicol. 80 (2015) 223-240. http://doi.org/10.1016/j.fct.2015.03.005.

[6]

B.I. Nwaru, L. Hickstein, S.S. Panesar, et al., Prevalence of common food allergies in Europe: a systematic review and meta-analysis, Allergy 69 (2014) 992-1007. http://doi.org/10.1111/all.12423.

[7]

J. Wang, Management of the patient with multiple food allergies, Curr. Allergy Asthma Rep. 10 (2010) 271-277. http://doi.org/10.1007/s11882-010-0116-0.

[8]

P. Dong, J.J. Feng, D.Y. Yan, et al., Early-life gut microbiome and cow's milk allergy-a prospective case-control 6-month follow-up study, Saudi J. Biol. Sci. 25 (2018) 875-880. http://doi.org/10.1016/j.sjbs.2017.11.051.

[9]

V. Schichter-Konfino, M. Almog, E. Bamberger, et al., The significance of allergic contact urticaria to milk in children with cow's milk allergy, Pediatr. Allergy Immunol. 26 (2015) 218-222. http://doi.org/10.1111/pai.12375.

[10]

J.M. Skripak, E.C. Matsui, K. Mudd, et al., The natural history of IgE-mediated cow's milk allergy, J. Allergy Clin. Immunol. 120 (2007) 1172-1177. http://doi.org/10.1016/j.jaci.2007.08.023.

[11]

A. Høst, Frequency of cow's milk allergy in childhood, Ann. Allergy Asthma Immunol. 89 (2002) 33-37. http://doi.org/10.1016/s1081-1206(10)62120-5.

[12]

S.L. Bavaro, E. De Angelis, S. Barni, et al., Modulation of milk allergenicity by baking milk in foods: a proteomic investigation, Nutrients 11 (2019) 1536. http://doi.org/10.3390/nu11071536.

[13]

G. Docena, R. Fernandez, F. Chirdo, et al., Identification of casein as the major allergenic and antigenic protein of cow's milk, Allergy 51 (1996) 412-416. https://doi.org/10.1111/j.1398-9995.1996.tb04639.x.

[14]

A. Maurmayr, A. Cecchinato, L. Grigoletto, et al., Detection and quantification of αS1-, αS2-, β-, κ-casein, α-lactalbumin, β-lactoglobulin and lactoferrin in bovine milk by reverse-phase high-performance liquid chromatography, Agriculturae Conspectus Scientificus 78 (2013) 201-205. https://hrcak.srce.hr/106905.

[15]

F. Roth-Walter, L.F. Pacios, C. Gomez-Casado, et al., The major cow milk allergen Bos d 5 manipulates T-helper cells depending on its load with siderophore-bound iron, PLoS ONE 9 (2014) e104803. http://doi.org/10.1371/journal.pone.0104803.

[16]

R.N. Pereira, R.M. Rodrigues, O.L. Ramos, et al., Electric field processing: novel perspectives on allergenicity of milk proteins, J. Agric. Food Chem. 66 (2018) 11227-11233. http://doi.org/10.1021/acs.jafc.8b03689.

[17]

J.M. Lee, J.S. Yoon, S.A. Jeon, et al., Sensitization patterns of cow's milk and major components in young children with atopic dermatitis, Asia Pac. Allergy 3 (2013) 179-185. http://doi.org/10.5415/apallergy.2013.3.3.179.

[18]

M. Pescuma, E.M. Hebert, T. Haertle, et al., Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of beta-lactoglobulin, Food Chem. 170 (2015) 407-414. http://doi.org/10.1016/j.foodchem.2014.08.086.

[19]

I. Cerecedo, J. Zamora, W.G. Shreffler, et al., Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray-based immunoassay, J. Allergy Clin. Immunol. 122 (2008) 589-594. http://doi.org/10.1016/j.jaci.2008.06.040.

[20]

Z. Sun, M. Wang, S. Han, et al., Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA, Sci. Rep. 8 (2018) 1-11. http://doi.org/10.1038/s41598-018-32024-x.

[21]

M. Pescuma, E.M. Hebert, H. Rabesona, et al., Proteolytic action of Lactobacillus delbrueckii subsp. bulgaricus CRL 656 reduces antigenic response to bovine beta-lactoglobulin, Food Chem. 127 (2011) 487-492. http://doi.org/10.1016/j.foodchem.2011.01.029.

[22]

Q. Xu, J. Shi, M. Yao, et al., Effects of heat treatment on the antigenicity of four milk proteins in milk protein concentrates, Food Agr. Immunol. 27 (2015) 401-413. http://doi.org/10.1080/09540105.2015.1117059.

[23]

F. Yuan, I. Ahmed, L. LÜ, et al., Impacts of glycation and transglutaminase-catalyzed glycosylation with glucosamine on the conformational structure and allergenicity of bovine beta-lactoglobulin, Food Funct. 9 (2018) 3944-3955. http://doi.org/10.1039/c8fo00909k.

[24]

M. Zeece, T. Huppertzand, A. Kelly, Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin, Innov. Food Sci. Emerg. Technol. 9 (2008) 62-69. http://doi.org/10.1016/j.ifset.2007.05.004.

[25]

A.B. Martı́n-Diana, C. Janer, C. Peláez, et al., Development of a fermented goat's milk containing probiotic bacteria, Int. Dairy J. 13 (2003) 827-833. https://doi.org/10.1016/S0958-6946(03)00117-1.

[26]

G. Bu, Y. Luo, Y. Zhang, et al., Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins, J. Sci. Food Agric. 90 (2010) 2015-2020. http://doi.org/10.1002/jsfa.4046.

[27]

A.M. De Leblanc, C. Matar, N. Leblanc, et al., Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model, Breast Cancer Res. 7 (2005) 477-486. http://doi.org/10.1186/bcr1032.

[28]

N. Kleber, U. Weyrichand, J. Hinrichs, Screening for lactic acid bacteria with potential to reduce antigenic response of β-lactoglobulin in bovine skim milk and sweet whey, Innov. Food Sci. Emerg. Technol. 7 (2006) 233-238. http://doi.org/10.1016/j.ifset.2005.12.005.

[29]

C.E. Vargas Garcia, M. Petrova, I.J. Claes, et al., Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages, Appl. Environ. Microbiol. 81 (2015) 2050-2062. http://doi.org/10.1128/AEM.03949-14.

[30]

R. Berni Canani, N. Sangwan, A.T. Stefka, et al., Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants, ISME J. 10 (2016) 742-750. http://doi.org/10.1038/ismej.2015.151.

[31]

R. Berni Canani, F. de Filippis, R. Nocerino, et al., Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow's milk allergy, Sci. Rep. 8 (2018) 12500. http://doi.org/10.1038/s41598-018-30428-3.

[32]

P.M. Smith, M.R. Howitt, N. Panikov, et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science 341 (2013) 569-573. http://doi.org/10.1126/science.1241165.

[33]

S.M. Vindigni, E.K. Broussard, C.M. Surawicz, Alteration of the intestinal microbiome: fecal microbiota transplant and probiotics for Clostridium difficile and beyond, Expert Rev. Gastroenterol. Hepatol. 7 (2013) 615-628. http://doi.org/10.1586/17474124.2013.832501.

[34]

X. Yan, L. Zhu, Y. Yu, et al., In-situ biocatalytic production of trehalose with autoinduction expression of trehalose synthase, J. Agric. Food Chem. 66 (2018) 1444-1451. http://doi.org/10.1021/acs.jafc.7b06031.

[35]

L. Zhu, B. Shen, Z. Song, et al., Permeabilized TreS-expressing Bacillus subtilis cells decorated with glucose isomerase and a shell of ZIF-8 as a reusable biocatalyst for the coproduction of trehalose and fructose, J. Agric. Food Chem. 68 (2020) 4464-4472. http://doi.org/10.1021/acs.jafc.0c00971.

[36]

P. Sáez-Plaza, T. Michałowski, M.J. Navas, et al., An overview of the Kjeldahl method of nitrogen determination. part I. early history, chemistry of the procedure, and titrimetric finish, Crit. Rev. Anal. Chem. 43 (2013) 178-223. http://doi.org/10.1080/10408347.2012.751786.

[37]

T. Liu, L. Zhu, Z. Zhu, et al., Genome sequence analysis of Clostridium tyrobutyricum, a promising microbial host for human health and industrial applications, Curr. Microbiol. 77 (2020) 3685-3694. http://doi.org/10.1007/s00284-020-02175-0.

[38]

R. Kazemi, A. Taheri-Kafrani, A. Motahari, et al., Allergenicity reduction of bovine milk β-lactoglobulin by proteolytic activity of Lactococcus lactis BMC12C and BMC19H isolated from Iranian dairy products, Int. J. Biol. Macromol. 112 (2018) 876-881. http://doi.org/10.1016/j.ijbiomac.2018.02.044.

[39]

B. Wróblewska, L.H. Markiewicz, A.M. Szyc, et al., Lactobacillus casei LcY decreases milk protein immunoreactivity of fermented buttermilk but also contains IgE-reactive proteins, Food Res. Int. 83 (2016) 95-101. http://doi.org/10.1016/j.foodres.2016.02.016.

[40]

V. Biscola, Y. Choiset, H. Rabesona, et al., Brazilian artisanal ripened cheeses as sources of proteolytic lactic acid bacteria capable of reducing cow milk allergy, J. Appl. Microbiol. 125 (2018) 564-574. http://doi.org/10.1111/jam.13779.

[41]

S. Peyron, J. Mouécoucou, S. Frémont, et al., Effects of heat treatment and pectin addition on β-lactoglobulin allergenicity, J. Agric. Food Chem. 54 (2006) 5643-5650. http://doi.org/10.1021/jf053178j.

[42]

I. Maier, V.M. Okun, F. Pittner, et al., Changes in peptic digestibility of bovine beta-lactoglobulin as a result of food processing studied by capillary electrophoresis and immunochemical methods, J. Chromatogr. B 841 (2006) 160-167. http://doi.org/10.1016/j.jchromb.2006.06.040.

[43]

A. Koh, F. de Vadder, P. Kovatcheva-Datchary, et al., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell 165 (2016) 1332-1345. http://doi.org/10.1016/j.cell.2016.05.041.

[44]

T. Hudcovic, J. Kolinska, J. Klepetar, et al., Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: differential regulation of tumour necrosis factor-alpha and interleukin-18 in BALB/c and severe combined immunodeficiency mice, Clin. Exp. Immunol. 167 (2012) 356-365. http://doi.org/10.1111/j.1365-2249.2011.04498.x.

Food Science and Human Wellness
Pages 809-816
Cite this article:
Zhao Q, Wang Y, Zhu Z, et al. Efficient reduction of β-lactoglobulin allergenicity in milk using Clostridium tyrobutyricum Z816. Food Science and Human Wellness, 2023, 12(3): 809-816. https://doi.org/10.1016/j.fshw.2022.09.017

828

Views

38

Downloads

25

Crossref

22

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 May 2021
Revised: 03 August 2021
Accepted: 11 October 2021
Published: 15 October 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return