AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Au@Ag-labeled SERS lateral flow assay for highly sensitive detection of allergens in milk

Jing Lia,1Jia Xua,1Yi PanaYongzhi ZhubYuanfeng WangbShouhui ChenaXinlin Weia( )
Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
Institute of Food Engineering, College of Life Science, Shanghai Normal University, Shanghai 200234, China

1 These authors contribute equally.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

Casein and α-lactalbumin (α-LA) are the main allergens in cow's milk, which can affect the skin, respiratory system, and gastrointestinal tract, even cause anaphylactic shock. Developing a rapid and sensitive detection method of casein and α-LA is still pursued. Herein, a surface-enhanced Raman scattering based lateral flow assay (SERS-LFA) method for rapid and highly sensitive detection of milk allergens in food was established for effectively preventing allergic symptoms. Gold@silver nanoparticles (Au@Ag NPs) were synthesized as SERS active substrate to prepare the antibody-modified SERS Probe and SERS-LFA strips toward casein and α-LA were assembled according to the sandwich mode. The detection results were calculated according to colorimetric and Raman signal. The introduction of SRES signal significantly increased the sensitivity of detection with the limit of detection (LOD) of 0.19 ng/mL and 1.74 pg/mL, and exhibited an excellent linear relationship within the range of 0.55-791.50 ng/mL and 0.1 pg/mL-100.0 ng/mL for casein and α-LA, respectively. Furthermore, SERS-LFA strips was highly specific with the recovery rates for corresponding 80.36%-105.12% and 85.73%-118.22% for casein and α-LA, respectively. Therefore, the SERS-LFA could be in great potential to develop a unique allergen detection method.

References

[1]

J.D. Kattan, R.R. Cocco, K.M. Jarvinen. Milk and soy allergy, Pediatr. Clin. N. Am. 58 (2011) 407-426. http://dx.doi.org/10.1016/j.pcl.2011.02.005.

[2]

A. Martorell-Aragones, L. Echeverria-Zudaire, E. Alonso-Lebrero, et al. Position document: IgE-mediated cow's milk allergy, Allergol. Immunopathol. 43 (2015) 507-526. http://dx.doi.org/10.1016/j.aller.2015.01.003.

[3]

C. Villa, J. Costa, M.B.P.P. Oliveira, et al. Cow's milk allergens: Screening gene markers for the detection of milk ingredients in complex meat products, Food Control 108 (2020) 106823. http://dx.doi.org/10.1016/j.foodcont.2019.106823.

[4]

S. Séverin, W.S. Xia. Milk biologically active components as nutraceuticals: review, Crit. Rev. Food Sci. Nutr. 45 (2005) 645-656. http://dx.doi.org/10.1080/10408690490911756.

[5]

L. Jaiswal, M. Worku. Recent perspective on cow's milk allergy and dairy nutrition, Crit. Rev. Food Sci. Nutr. (2021) 1-15. http://dx.doi.org/10.1080/10408398.2021.1915241.

[6]

P.F. Fox. Milk proteins as food ingredients, Int. J. Dairy Technol. 54 (2001) 41-55. http://dx.doi.org/10.1046/j.1471-0307.2001.00014.x.

[7]

H. Matsuo, T. Yokooji, T. Taogoshi. Common food allergens and their IgE-binding epitopes, Allergol. Int. 64 (2015) 332-343. http://dx.doi.org/10.1016/j.alit.2015.06.009.

[8]

L. Monaci, A. Visconti. Mass spectrometry-based proteomics methods for analysis of food allergens, TrAC Trends Anal. Chem. 28 (2009) 581-591. http://dx.doi.org/10.1016/j.trac.2009.02.013.

[9]

J. Ji, P. Zhu, F. Pi, et al. Development of a liquid chromatography-tandem mass spectrometry method for simultaneous detection of the main milk allergens, Food Control 74 (2017) 79-88. http://dx.doi.org/10.1016/j.foodcont.2016.11.030.

[10]

X. Guan, Q. Cai, W.J. Zhang, et al. Development of a real-time quantitative PCR assay using a TaqMan minor groove binder probe for the detection of α-lactalbumin in food, J. Dairy Sci. 99(2016) 1716-1724. http://dx.doi.org/10.3168/jds.2015-10255.

[11]

S.M. Allgoewer, C.A. Hartmann, C. Lipinski, et al. LAMP-LFD based on isothermal amplification of multicopy gene ORF160b: applicability for highly sensitive low-tech screening of allergenic soybean (Glycine max) in food, Foods 9 (2020) E1741. http://dx.doi.org/10.3390/foods9121741.

[12]

S.C. Sheu, M.T. Yu, Y.Y. Lien, et al. Development of a specific isothermal nucleic acid amplification for the rapid and sensitive detection of shrimp allergens in processed food, Food Chem. 332 (2020) 127389. http://dx.doi.org/10.1016/j.foodchem.2020.127389.

[13]

C. Villa, J. Costa, M.B.P.P. Oliveira, et al. Bovine milk allergens: a comprehensive review, Compr. Rev. Food Sci. F 17 (2018) 137-164. http://dx.doi.org/10.1111/1541-4337.12318.

[14]

G. Picariello, G. Mamone, F. Addeo, et al. The frontiers of mass spectrometry-based techniques in food allergenomics, Journal of Chromatogr. A 1218 (2011) 7386-7398. http://dx.doi.org/10.1016/j.chroma.2011.06.033.

[15]

X.X. Xu, W.L. Ge, S. Suryoprabowo, et al. Fluorescence-based immunochromatographic strip test for the detection of hyoscyamine, Analyst 147(2022) 293-302. http://dx.doi.org/10.1039/D1AN01973B.

[16]

M. Prado, I. Ortea, S. Vial, et al. Advanced DNA-and protein-based methods for the detection and investigation of food allergens, Crit. Rev. Food Sci. Nutr. 56 (2016) 2511-2542. http://dx.doi.org/10.1080/10408398.2013.873767.

[17]

S.F. He, X. Li, Y. Wu, et al. Highly sensitive detection of bovine β-lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe, J. Agr. Food Chem. 66(2018) 11830-11838. http://dx.doi.org/10.1021/acs.jafc.8b04086.

[18]

C. Yang, B.X. Gu, C.X. Xu, et al. Self-assembled ZnO quantum dot bioconjugates for direct electrochemical determination of allergen, J. Electroanal. Chem. 660 (2011) 97-100. http://dx.doi.org/10.1016/j.jelechem.2011.06.011.

[19]

S.F. He, X. Li, J.Y. Gao, et al. Development of a H2O2-sensitive quantum dots-based fluorescent sandwich ELISA for sensitive detection of bovine-lactoglobulin by monoclonal antibody, J Sci. Food. Agr. 98 (2018) 519-526. http://dx.doi.org/10.1002/jsfa.8489.

[20]

R. Pilolli, E. De Angelis, L. Monaci. In house validation of a high resolution mass spectrometry Orbitrap-based method for multiple allergen detection in a processed model food, Anal. Bioanal. Chem. 410 (2018) 5653-5662. http://dx.doi.org/10.1007/s00216-018-0927-8.

[21]

Y. Zhu, L.Li, Z.H. Wang, et al. Development of an immunochromatography strip for the rapid detection of 12 fluoroquinolones in chicken muscle and liver, J Sci. Food. Agr. 56 (2008) 5469-5474. http://dx.doi.org/10.1021/jf800274f.

[22]

P. Schubert-Ullrich, J. Rudolf, P. Ansari, et al. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview, Anal. Bioanal. Chem. 395 (2009) 69-81. http://dx.doi.org/10.1007/s00216-009-2715-y.

[23]

B.B. Dzantiev, N.A. Byzova, A.E. Urusov, et al. Immunochromatographic methods in food analysis, TrAC Trends Anal. Chem. 55 (2014) 81-93. http://dx.doi.org/10.1016/j.trac.2013.11.007.

[24]

R.C. Courtney, S.L. Taylor, J.L. Baumert. Evaluation of commercial milk-specific lateral flow devices, J. Food Protect. 79 (2016) 1767. http://dx.doi.org/10.4315/0362-028X.JFP-16-127.

[25]

P. Galan-Malo, S. Pellicer, M.D. Perez, et al. Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food, Food Chem. 293 (2019) 41-48. http://dx.doi.org/10.1016/j.foodchem.2019.04.039.

[26]

J. Langer, D.J. de Aberasturi, J. Aizpurua, et al. Present and future of surface-enhanced Raman scattering, ACS Nano 14 (2020) 28-117 http://dx.doi.org/10.1021/acsnano.9b04224.

[27]

R.R. Jones, D.C. Hooper, L.W. Zhang, et al. Raman techniques: fundamentals and frontiers, Nanoscale Res. Lett. 14 (2019) 1-34. http://dx.doi.org/10.1186/s11671-019-3039-2.

[28]

C. Chen, W.F. Liu, S.P. Tian, et al. Novel Surface-enhanced Raman spectroscopy techniques for DNA, protein and drug detection, Sensors 19 (2019) 1712. http://dx.doi.org/10.3390/s19071712.

[29]

Y.Y. Su, D. Wu, J. Chen, et al. Ratiometric surface enhanced Raman scattering immunosorbent assay of allergenic proteins via covalent organic framework composite material based nanozyme Tag triggered Raman signal "turn-on" and amplification, Anal. Chem. 91 (2019) 11687-11695. http://dx.doi.org/10.1021/acs.analchem.9b02233.

[30]

K.Q. Wang, D.W. Sun, H.B. Pu, et al. Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes, Talanta 191 (2019) 449-456. http://dx.doi.org/10.1016/j.talanta.2018.08.005.

[31]

S. Lee, H. Portalès, M. Walls, et al. Versatile and robust synthesis process for the fine control of the chemical composition and core-crystallinity of spherical core-shell Au@Ag nanoparticles, Nanotechnology 32 (2020) 1-15. http://dx.doi.org/10.1088/1361-6528/abc450.

[32]

K.Q. Wang, D.W. Sun, H.B. Pu, et al. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues, Talanta 223 (2021) 121782. http://dx.doi.org/10.1016/j.talanta.2020.121782.

[33]

Y. Xie, H.F. Chang, K. Zhao, et al. A novel immunochromatographic assay (ICA) based on surface-enhanced Raman scattering for the sensitive and quantitative determination of clenbuterol, Anal. Methods 7(2015) 513-520. http://dx.doi.org/10.1039/c4ay01923g.

[34]

N.F. Xu, Y.F. Wang, L. Pan, et al. Dual-labelled immunoassay with goldmag nanoparticles and quantum dots for quantification of casein in milk, Food Agr. Immunol. 28 (2017) 1105-1115. http://dx.doi.org/10.1080/09540105.2017.1328662.

[35]

L. Anfossi, F.D. Nardo, A. Russo, et al. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens, Anal. Bioanal. Chem. 411 (2019) 1905-1913. http://dx.doi.org/10.1007/s00216-018-1451-6.

[36]

S. Kamimura, S. Yamashita, S. Abe, et al. Effect of core@shell (Au@Ag) nanostructure on surface plasmon-induced photocatalytic activity under visible light irradiation, Appl. Catal. B Environ. 211 (2017) 11-17. http://dx.doi.org/10.1016/j.apcatb.2017.04.028.

[37]

D. Anh, P. Singh, C. Shankar, et al. Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@Ag)@Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes, Appl. Phys. Lett. 99 (2011) 73107. http://dx.doi.org/10.1063/1.3626031.

[38]

A.S. Yang, Y.C. Zheng, C.Y. Long, et al. Fluorescent immunosorbent assay for the detection of alpha lactalbumin in dairy products with monoclonal antibody bioconjugated with CdSe/ZnS quantum dots, Food Chem. 150 (2014) 73-79. http://dx.doi.org/10.1016/j.foodchem.2013.10.137.

[39]

B.M.J. Van Der Meulen, European food and feed law review, EFFL (2011).

Food Science and Human Wellness
Pages 912-919
Cite this article:
Li J, Xu J, Pan Y, et al. Au@Ag-labeled SERS lateral flow assay for highly sensitive detection of allergens in milk. Food Science and Human Wellness, 2023, 12(3): 912-919. https://doi.org/10.1016/j.fshw.2022.09.027

568

Views

41

Downloads

13

Crossref

12

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 18 December 2021
Revised: 28 February 2022
Accepted: 06 April 2022
Published: 15 October 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return