AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (857 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Investigation on small molecule-aptamer dissociation equilibria based on antisense displacement probe

Lei WangLili YaoQihui MaYu Mao( )Hao QuLei Zheng( )
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
Show Author Information

Abstract

Food safety is a major issue to public health and have attracted global attention. Fast, sensitive, and reliable detection methods for food hazardous substances is highly desirable. Aptamers which can bind to the target molecules with high affinity and specificity represent an attractive tool for the recognition of food hazardous substances, which play an important role in the development and application of new food safety detection technology. But current assays for characterizing small molecule-aptamer binding are limited by either the mass sensitivity or the size differentiation ability. Herein, we proposed a comprehensive method for assessing the dissociation equilibria of small molecule-aptamer, which is immobilized-free under ambient conditions. The design employs the Le Chatelier's principle and could be used to effectively measure small molecule-aptamer interactions. ATP binding aptamer and anti-aflatoxin B1 aptamer were used as the model system to determine their affinity, in which their dissociation equilibria measurements are in excellent close to their previous work. Due to the simplicity and sensitivity of this new method, we believe that it could be recommended as an effective tool for characterizing small molecule-aptamer interactions and promote the further application of small molecular aptamer in food safety.

References

[1]

T. Martinovic, U. Andjelkovic, M.S. Gajdosik, et al., Foodborne pathogens and their toxins, J. Proteomics 147 (2016) 226-235. http://dx.doi.org/10.1016/j.jprot.2016.04.029.

[2]

M. Aijuka, E.M. Buys, Persistence of foodborne diarrheagenic Escherichia coli in the agricultural and food production environment: implications for food safety and public health, Food Microbiol 82 (2019) 363-370.http://dx.doi.org/10.1016/j.fm.2019.03.018.

[3]

S. Ayofemi Olalekan Adeyeye, Aflatoxigenic fungi and mycotoxins in food: a review, Crit. Rev. Food Sci. 60 (5) (2020) 709-721. http://dx.doi.org/10.1080/10408398.2018.1548429.

[4]

M.C. Moreno-Bondi, Antibiotics in food and environmental samples, Anal. Bioanal. Chem. 395 (4) (2009) 875-876. http://dx.doi.org/10.1007/s00216-009-3004-5.

[5]

M. Bacanli, N. Basaran, Importance of antibiotic residues in animal food, Food Chem. Toxicol. 125 (2019) 462-466. http://dx.doi.org/10.1016/j.fct.2019.01.033.

[6]

M. Oplatowska-Stachowiak, C.T. Elliott, Food colors: existing and emerging food safety concerns, Crit. Rev. Food Sci. 57 (3) (2017) 524-548.http://dx.doi.org/10.1080/10408398.2014.889652.

[7]

L. Trasande, R.M. Shaffer, S. Sathyanarayana, et al., Food additives and child health, Pediatrics 142 (2) (2018) 1410. http://dx.doi.org/10.1542/peds.2018-1410.

[8]

W.S. Darwish, A.S. Atia, M.H.E. Khedr, et al., Metal contamination in quail meat: residues, sources, molecular biomarkers, and human health risk assessment, Environ. Sci. Pollut. R. 25 (20) (2018) 20106-20115.http://dx.doi.org/10.1007/s11356-018-2182-0.

[9]

P. Wang, H. Chen, P.M. Kopittke, et al., Cadmium contamination in agricultural soils of China and the impact on food safety, Environ. Pollut. 249 (2019) 1038-1048. http://dx.doi.org/10.1016/j.envpol.2019.03.063.

[10]

D. Arcella, A. Boobis, P. Cressey, et al., Harmonized methodology to assess chronic dietary exposure to residues from compounds used as pesticide and veterinary drug, Crit. Rev. Toxicol. 49 (1) (2019) 1-10. http://dx.doi.org/10.1080/10408444.2019.1578729.

[11]

C.P. Chang, P.H. Hou, W.C. Yang, et al., Analytical detection of sulfonamides and organophosphorus insecticide residues in fish in Taiwan, Molecules 25 (7) (2020) 1501. http://dx.doi.org/10.3390/molecules25071501.

[12]

G.H. Yang, N.S. Zhong, Effect on health from smoking and use of solid fuel in China, The Lancet 372 (9648) (2008) 1445-1446.http://dx.doi.org/10.1016/s0140-6736(08)61346-x.

[13]

L. Anfossi, C. Baggiani, C. Giovannoli, et al., Lateral-flow immunoassays for mycotoxins and phycotoxins: a review, Anal. Bioanal. Chem. 405 (2/3) (2013) 467-480. http://dx.doi.org/10.1007/s00216-012-6033-4.

[14]

X. Tang, Q. Zhang, Z. Zhang, et al., Rapid, on-site and quantitative paper-based immunoassay platform for concurrent determination of pesticide residues and mycotoxins, Anal. Chim. Acta 1078 (2019) 142-150.http://dx.doi.org/10.1016/j.aca.2019.06.015.

[15]

G.Q. Zhang, L.P. Zhong, N. Yang, et al., Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer, World J. Gastroentero. 25 (26) (2019) 3359-3369. http://dx.doi.org/10.3748/wjg.v25.i26.3359.

[16]

L. Gold, B. Polisky, O. Uhlenbeck, et al., Diversity of oligonucleotide functions, Annu. Rev. Biochem. 64 (1995) 763-797. http://dx.doi.org/10.1146/annurev.bi.64.070195.003555.

[17]

L.C. Bock, L.C. Griffin, J.A. Latham, et al., Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355 (6360) (1992) 564-566. http://dx.doi.org/10.1038/355564a0.

[18]

X. Zou, J. Wu, J. Gu, et al., Application of aptamers in virus detection and antiviral therapy, Front. Microbiol. 10 (2019) 1462. http://dx.doi.org/10.3389/fmicb.2019.01462.

[19]

G.T. Rozenblum, V.G. Lopez, A.D. Vitullo, et al., Aptamers: current challenges and future prospects, Expert Opin. Drug Discov. 11 (2) (2016) 127-135. http://dx.doi.org/10.1517/17460441.2016.1126244.

[20]

A. Chen, S. Yang, Replacing antibodies with aptamers in lateral flow immunoassay, Biosens. Bioelectron. 71 (2015) 230-242.http://dx.doi.org/10.1016/j.bios.2015.04.041.

[21]

X. Liu, X. Zhang, Aptamer-based technology for food analysis, Appl. Biochem. Biotech. 175 (1) (2015) 603-624. http://dx.doi.org/10.1007/s12010-014-1289-0.

[22]

D.M. Xu, M. Wu, Y. Zou, et al., Application of aptamers in food safety, Chinese J. Anal. Chem. 39 (6) (2011) 925-933. http://dx.doi.org/10.1016/s1872-2040(10)60447-1.

[23]

M. Prante, E. Segal, T. Scheper, et al., Aptasensors for point-of-care detection of small molecules, Biosensors-Basel 10 (9) (2020) 108. http://dx.doi.org/10.3390/bios10090108.

[24]

S. Wu, L. Liu, N. Duan, et al., A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles, Microchim. Acta. 185 (11) (2018) 497. http://dx.doi.org/10.1007/s00604-018-3022-0.

[25]

M. McKeague, R. Velu, K. Hill, et al., Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A, Toxins 6 (8) (2014) 2435-2452. http://dx.doi.org/10.3390/toxins6082435.

[26]

Y. Zhang, Y. Hu, S. Deng, et al., Engineering multivalence aptamer probes for amplified and label-free detection of antibiotics in aquatic products, J. Agric. Food Chem. 68 (8) (2020) 2554-2561. http://dx.doi.org/10.1021/acs.jafc.0c00141.

[27]

Y. Luan, N. Wang, C. Li, et al., Advances in the application of aptamer biosensors to the detection of aminoglycoside antibiotics, Antibiotics-Basel 9 (11) (2020) 787. http://dx.doi.org/10.3390/antibiotics9110787.

[28]

J. Liu, J. Zeng, Y. Tian, et al., An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples, Analyst 143 (1) (2017) 182-189. http://dx.doi.org/10.1039/c7an01476g.

[29]

N. Kaneko, K. Horii, J. Akitomi, et al., An aptamer-based biosensor for direct, label-free detection of melamine in raw milk, Sensors-Basel 18 (10) (2018) 3227. http://dx.doi.org/10.3390/s18103227.

[30]

A. Ruscito, M.C. DeRosa, Small-molecule binding aptamers: selection strategies, characterization, and applications, Front. Chem. 4 (2016) 14.http://dx.doi.org/10.3389/fchem.2016.00014.

[31]

Z. Zhang, O. Oni, J. Liu, New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection, Nucleic Acids Res 45 (13) (2017) 7593-7601. http://dx.doi.org/10.1093/nar/gkx517.

[32]

A.L. Chang, M. McKeague, J.C. Liang, et al., Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform, Anal. Chem. 86 (7) (2014) 3273-3278.http://dx.doi.org/10.1021/ac5001527.

[33]

E. Gonzalez-Fernandez, N. de-los-Santos-Alvarez, A.J. Miranda-Ordieres, et al., SPR evaluation of binding kinetics and affinity study of modified RNA aptamers towards small molecules, Talanta 99 (2012) 767-773.http://dx.doi.org/10.1016/j.talanta.2012.07.019.

[34]

M.N. Kammer, I.R. Olmsted, A.K. Kussrow, et al., Characterizing aptamer small molecule interactions with backscattering interferometry, Analyst 139 (22) (2014) 5879-5884. http://dx.doi.org/10.1039/c4an01227e.

[35]

C. Entzian, T. Schubert, Studying small molecule-aptamer interactions using microscale thermophoresis (MST), Methods 97 (2016) 27-34.http://dx.doi.org/10.1016/j.ymeth.2015.08.023.

[36]

C. Entzian, T. Schubert, Mapping the binding site of an aptamer on ATP using microScale thermophoresis, Jove-J. Vis. Exp 119 (2017) e55070.http://dx.doi.org/10.3791/55070.

[37]

R. Deng, Y. Dong, X. Xia, et al., Recognition-enhanced metastably shielded aptamer for digital quantification of small molecules, Anal. Chem. 90 (24) (2018) 14347-14354. http://dx.doi.org/10.1021/acs.analchem.8b03763.

[38]

H. Qu, A.T. Csordas, J. Wang, et al., Rapid and label-free strategy to isolate aptamers for metal ions, ACS Nano 10 (8) (2016) 7558-7565.http://dx.doi.org/10.1021/acsnano.6b02558.

[39]

M. McKeague, A. de Girolamo, S. Valenzano, et al., Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation, Anal. Chem. 87 (17) (2015) 8608-8612. http://dx.doi.org/10.1021/acs.analchem.5b02102.

[40]

C. Zong, J. Liu, The arsenic-binding aptamer cannot bind arsenic: critical evaluation of aptamer selection and binding, Anal. Chem. 91 (2019) 10887-108933. http://dx.doi.org/10.1021/acs.analchem.9b02789.

[41]

Y. Zhu, P. Chandra, C. Ban, et al., Electrochemical evaluation of binding affinity for aptamer selection using the microarray chip, Electroanal 24 (5) (2012) 1057-1064. http://dx.doi.org/10.1002/elan.201100734.

[42]

Q. Deng, I. German, D. Buchanan, et al., Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase, Anal. Chem. 73 (22) (2001) 5415-5421. http://dx.doi.org/10.1021/ac0105437.

[43]

R.T. Turgeon, B.R. Fonslow, M. Jing, et al., Measuring aptamer equilibria using gradient micro free flow electrophoresis, Anal. Chem. 82 (9) (2010) 3636-3641. http://dx.doi.org/10.1021/ac902877v.

[44]

R.E. Armstrong, G.F. Strouse, Rationally manipulating aptamer binding affinities in a stem-loop molecular beacon, Bioconjugate Chem 25 (10) (2014) 1769-1776. http://dx.doi.org/10.1021/bc500286r.

[45]

B.D. Wilson, A.A. Hariri, I.A.P. Thompson, et al., Independent control of the thermodynamic and kinetic properties of aptamer switches, Nat. Commun. 10 (1) (2019) 5079. http://dx.doi.org/10.1038/s41467-019-13137-x.

[46]

R. Nutiu, Y. Li, Structure-switching signaling aptamers, J. Am. Chem. Soc. 125 (16) (2003) 4771-4778. http://dx.doi.org/10.1021/ja028962o.

[47]

S.D. Jhaveri, R. Kirby, R. Conrad, et al., Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity, J. Am. Chem. Soc. 122 (11) (2000) 2469-2473. http://dx.doi.org/10.1021/ja992393b.

[48]

J. Wang, Y. Jiang, C. Zhou, et al., Aptamer-based ATP assay using a luminescent light switching complex, Anal. Chem. 77 (11) (2005) 3542-3546.http://dx.doi.org/10.1021/ac050165w.

[49]

H. Urata, K. Nomura, S. Wada, et al., Fluorescent-labeled single-strand ATP aptamer DNA: chemo- and enantio-selectivity in sensing adenosine, Biochem. Bioph. Res. Co. 360 (2) (2007) 459-463. http://dx.doi.org/10.1016/j.bbrc.2007.06.075.

[50]

N. Li, C.M. Ho, Aptamer-based optical probes with separated molecular recognition and signal transduction modules, J. Am. Chem. Soc. 130 (8) (2008) 2380-2381. http://dx.doi.org/10.1021/ja076787b.

[51]

N. Rupcich, R. Nutiu, Y. Li, et al., Solid-phase enzyme activity assay utilizing an entrapped fluorescence-signaling DNA aptamer, Angew. Chem. 45 (20) (2006) 3295-3299. http://dx.doi.org/10.1002/anie.200504576.

[52]

Z. Tang, P. Mallikaratchy, R. Yang, et al., Aptamer switch probe based on intramolecular displacement, J. Am. Chem. Soc. 130 (34) (2008) 11268-11269. http://dx.doi.org/10.1021/ja804119s.

[53]

Y. Chen, H. Li, T. Gao, et al., Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II), Sensors Actuat. B-Chem. 254 (2018) 214-221. http://dx.doi.org/10.1016/j.snb.2017.07.068.

[54]

A. Vallee-Belisle, F. Ricci, K.W. Plaxco, Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors, P. Natl. Acad. Sci. U.S.A. 106 (33) (2009) 13802-13807. http://dx.doi.org/10.1073/pnas.0904005106.

[55]

D.E. Huizenga, J.W. Szostak, A DNA aptamer that binds adenosine and ATP, Biochemistry 34 (2) (1995) 656-665. http://dx.doi.org/10.1021/bi00002a033.

[56]
L.C. Le, J.A. Cruz-Aguado, G.A. Penner, DNA ligands for aflatoxin and zearalenone, US patent PTC/CA2010/001292 (2012).
Food Science and Human Wellness
Pages 1257-1264
Cite this article:
Wang L, Yao L, Ma Q, et al. Investigation on small molecule-aptamer dissociation equilibria based on antisense displacement probe. Food Science and Human Wellness, 2023, 12(4): 1257-1264. https://doi.org/10.1016/j.fshw.2022.10.008

484

Views

57

Downloads

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 12 February 2021
Revised: 10 March 2021
Accepted: 07 April 2021
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return