AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (458.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Characterization of the core microflora and nutrient composition in packaged pasteurized milk products during storage

Ruixue DingaShanshan YangaLijuan GengbYumeng LiuaBaoping HecLiyun LiudXiqing YueaRina Wua( )Junrui Wua( )
Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
Shenyang Institute for Food and Drug Control, Shenyang 110122, China
Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010080, China
China Mengniu Dairy Co., Ltd., Hohhot 010000, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Pasteurized milk contains complex microbial communities affected by sterilization and storage conditions. This complex microflora may be the possible reason that pasteurized dairy products are highly prone to spoilage. In this study, packaged pasteurized milk products collected from dairy processing factories in China were stored at 0, 4, 10, 15, and 25 ℃ for 0−15 days and subjected to microbial identification using high-throughput sequencing. Accordingly, 6 phyla and 44 genera were identified as the dominant microbiota. Moreover, the changes in nutritional composition of the pasteurized milk, including in 16 free amino acids, 7 taste values, and 8 chemical constituents, were analyzed using principal component and multi-factor analyses. The Pearson correlation analysis identified Pseudomonas, Aeromonas, Paenibacillus, and Serratia genera as the core functional microbiota that significantly affects the nutritional composition of pasteurized milk. Hence, the results provide a comprehensive understanding of the safety and shelf-life of stored pasteurized milk.

References

[1]

M.A. Islam, S. Roy, A. Nabi, et al., Microbiological quality assessment of milk at different stages of the dairy value chain in a developing country setting, Int. J. Food Microbiol. 2 (2018) 11-19. https://doi.org/10.1016/j.ijfoodmicro.2018.04.028.

[2]

D. Huccetogullari, Z.W. Luo, S.A.O. Lee, Metabolic engineering of microorganisms for production of aromatic compounds, Microb. Cell Fact. 18 (2019) 41. https://doi.org/10.1186/s12934-019-1090-4.

[3]

R. Ding, Y. Liu, S. Yang, et al., High-throughput sequencing provides new insights into the roles and implications of core microbiota present in pasteurized milk, Food Res. Int. 137 (2020) 109586. https://doi.org/10.1016/j.foodres.2020.109586.

[4]

H.J. Kim, H.I. Yong, S. Park, et al., Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma, Food Control 47 (2015) 451-456. https://doi.org/10.1016/j.foodcont.2014.07.053.

[5]

D. Porcellato, S. Siv Borghild, Bacterial dynamics and functional analysis of microbial metagenomes during ripening of Dutch-type cheese, Int. Dairy J. 61 (2016) 182-188. https://doi.org/10.1016/j.idairyj.2016.05.005.

[6]

S. Olishevska, A. Nickzad, E.A.O. Déziel, Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens, Appl. Microbiol. Biotechnol. 103 (2019) 1189-1215. https://doi.org/10.1007/s00253-018-9541-0.

[7]

D.T. Mugadza, B. Elna, Bacillus and Paenibacillus species associated with extended shelf life milk during processing and storage, Int. J. Dairy Technol. 71 (2018) 301-308. https://doi.org/10.1111/1471-0307.12474.

[8]

R.A. Ivy, M.L. Ranieri, N.H. Martin, et al., Identification and characterization of psychrotolerant sporeformers associated with fluid milk production and processing, Appl. Environ. Microbiol. 78 (2012) 1853-1864. https://doi.org/10.1128/AEM.06536-11.

[9]

M.L. Ranieri, K.J. Boor, Tracking and eliminating sporeformers in dairy systems, Aust. J. Dairy Technol. 65(2) (2010) 74-80.

[10]

A.D. Andrus, B. Campbell, K.J. Boor, et al., Short communication: postpasteurization hold temperatures of 4 or 6 ℃, but not raw milk holding of 24 or 72 hours, affect bacterial outgrowth in pasteurized fluid milk, J.Dairy Sci. 98(11) (2015) 7640-7643. https://doi.org/10.3168/jds.2015-9531.

[11]

P. Scheldeman, L. Herman, S. Foster, et al., Bacillus sporothermodurans and other highly heat-resistant spore formers in milk, J. Appl. Microbiol. 101(3)(2006) 542-555. https://doi.org/10.1111/j.1365-2672.2006.02964.x.

[12]

C.J. Doyle, D. Gleeson, P.W. O'Toole, et al., High-throughput metataxonomic characterization of the raw milk microbiota identifies changes reflecting lactation stage and storage conditions, Int. J. Food Microbiol. 255(2017) 1-6. https://doi.org/10.1016/j.ijfoodmicro.2017.05.019.

[13]

M.L. Ranieri, J.R. Huck, M. Sonnen, et al., High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk, J. Dairy Sci. 92(10) (2009)4823-4832. https://doi.org/10.3168/jds.2009-2144.

[14]

F.O. Baglinière, D. Annie, M.O. Aurélie, et al., Proteolysis of ultra high temperature-treated casein micelles by AprX enzyme from Pseudomonas fluorescens F induces their destabilisation, Int. Dairy J. 31(2) (2013) 55-61.https://doi.org/10.1016/j.idairyj.2013.02.011.

[15]

F. Baglinière, G. Tanguy, J. Jardin, et al., Quantitative and qualitative variability of the caseinolytic potential of different strains of Pseudomonas fluorescens: implications for the stability of casein micelles of UHT milks during their storage, Food Chem. 135(4) (2012) 2593-2603.https://doi.org/10.1016/j.foodchem.2012.06.099.

[16]

V.S.J. Schmidt, V. Kaufmann, U. Kulozik, et al., Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life(ESL) milk from Germany, Austria and Switzerland, Int. J. Food Microbiol.154(2) (2012) 1-9. https://doi.org/10.1016/j.ijfoodmicro.2011.12.002.

[17]

C. Juárez-Castelán, I. García-Cano, A. Escobar-Zepeda, et al., Evaluation of the bacterial diversity of Spanish-type chorizo during the ripening process using high-throughput sequencing and physicochemical characterization, Meat Sci. 150 (2019) 7-13. https://doi.org/10.1016/j.meatsci.2018.09.001.

[18]

D. Raats, M. Offek, D. Minz, et al., Molecular analysis of bacterial communities in raw cow milk and the impact of refrigeration on its structure and dynamics, Food Microbiol. 28(3) (2011) 465-471.https://doi.org/10.1016/j.fm.2010.10.009.

[19]

W. Jin, Z. Zhang, K. Zhu, et al., Comprehensive understanding of the bacterial populations and metabolites profile of fermented feed by 16S rRNA gene sequencing and liquid chromatography-mass spectrometry, Metabolites 9(10) (2019) 239. https://doi.org/10.3390/metabo9100239.

[20]

L. Quigley, O. O'Sullivan, C. Stanton, et al., The complex microbiota of raw milk, FEMS Microbiol. Rev. 37(5) (2013) 664-698.https://doi.org/10.1111/1574-6976.12030.

[21]

T.T. Nieminen, K. Koskinen, P. Laine, et al., Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics, Int. J. Food Microbiol. 157(2) (2012) 142-149. https://doi.org/10.1016/j.ijfoodmicro.2012.04.016.

[22]

M. von Neubeck, C. Baur, M. Krewinkel, et al., Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential, Int. J. Food Microbiol. 15(211) (2015) 57-65. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001.

[23]

L.A. Dias, A.M. Peres, A.C.A. Veloso, et al., An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk, Sens. Actuators B Chem. 136(1) (2009) 209-217. https://doi.org/10.1016/j.snb.2008.09.025.

[24]

L. Li, J.A. Renye Jr., L. Feng, et al., Characterization of the indigenous microflora in raw and pasteurized buffalo milk during storage at refrigeration temperature by high-throughput sequencing, J. Dairy Sci. 99(9) (2016) 7016-7024. https://doi.org/10.3168/jds.2016-11041.

[25]

T.R. Chen, Q.K. Wei, Y.J. Chen, Pseudomonas spp. and Hafnia alvei growth in UHT milk at cold storage, Food Control 22(5) (2011) 697-701.https://doi.org/10.1016/j.foodcont.2010.10.004.

[26]

A. Mateos, M. Guyard-Nicodeme, F. Bagliniere, et al., Proteolysis of milk proteins by AprX, an extracellular protease identified in Pseudomonas LBSA1 isolated from bulk raw milk, and implications for the stability of UHT milk, Int. Dairy J. 49 (2015) 78-88. https://doi.org/10.1016/j.idairyj.2015.04.008.

[27]

L.F.W. Roesch, R.R. Fulthorpe, A. Riva, et al., Pyrosequencing enumerates and contrasts soil microbial diversity, ISME J. 1(4) (2007) 283-290.https://doi.org/10.1038/ismej.2007.53.

[28]

E. Hantsis-Zacharov, M. Halpern, Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk, Int. J. Syst. Evol.Microbiol. 57(10) (2007) 2344-2348. https://doi.org/10.1099/ijs.0.65819-0.

[29]

D. Ercolini, F. Russo, I. Ferrocino, et al., Molecular identification of mesophilic and psychrotrophic bacteria from raw cow's milk, Food Microbiol. 26(2) (2009) 228-231. https://doi.org/10.1016/j.fm.2008.09.005.

[30]

E. Røssvoll, H.T. Rønning, P.E. Granum, et al., Toxin production and growth of pathogens subjected to temperature fluctuations simulating consumer handling of cold cuts, Int. J. Food Microbiol. 185 (2014) 82-92.https://doi.org/10.1016/j.ijfoodmicro.2014.05.020.

[31]

S.G. Machado, M. Heyndrickx, J. de Block, et al., Identification and characterization of a heat-resistant protease from Serratia liquefaciens isolated from Brazilian cold raw milk, Int. J. Food Microbiol. 2(222) (2016)65-71. https://doi.org/10.1016/j.ijfoodmicro.2016.01.014.

[32]

D.K. Papageorgiou, D.S. Melas, A. Abrahim, et al., Growth and survival of Aeromonas hydrophila in rice pudding (milk rice) during its storage at 4 ℃ and 12 ℃, Food Microbiol. 20(4) (2003) 385-390. https://doi.org/10.1016/S0740-0020(03)00022-4.

[33]

S. Cleto, S. Matos, L. Kluskens, et al., Characterization of contaminants from a sanitized milk processing plant, PLoS One 7(6) (2012) e40189.https://doi.org/10.1371/journal.pone.0040189.

[34]

V. Lafarge, J.C. Ogier, V. Girard, et al., Raw cow milk bacterial population shifts attributable to refrigeration, Appl. Environ. Microbiol. 70(9) (2004)5644-5650. https://doi.org/10.1128/AEM.70.9.5644-5650.2004.

[35]

S.G. Machado, F.L. da Silva, D.M. Bazzolli, et al., Pseudomonas spp. and Serratia liquefaciens as predominant spoilers in cold raw milk, J. Food Sci.80(8) (2015) M1842-1849. https://doi.org/10.1111/1750-3841.12957.

[36]

K.H. Teh, S. Flint, J. Palmer, et al., Thermo-resistant enzyme-producing bacteria isolated from the internal surfaces of raw milk tankers, Int. Dairy J.21(10) (2011) 742-747. https://doi.org/10.1016/j.idairyj.2011.04.013.

[37]

M. Decimo, S. Morandi, T. Silvetti, et al., Characterization of Gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk, J. Food Sci.79(10) (2014) 2081-2090. https://doi.org/10.1111/1750-3841.12645.

[38]

E.A. Rasolofo, D. St-Gelais, G. LaPointe, et al., Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk, Int. J. Food Microbiol. 138(1/2) (2010) 108-118.https://doi.org/10.1016/j.ijfoodmicro.2010.01.008.

[39]

Q. Ren, L. Li, O.E. Dudu, et al., Thermal and structural changes of pasteurized milk fat globules during storage, Food Biosci. 28 (2019) 27-35.https://doi.org/10.1016/j.fbio.2018.12.002.

[40]

V. de Jonghe, A. Coorevits, K. van Hoorde, et al., Influence of storage conditions on the growth of Pseudomonas species in refrigerated raw milk, Appl. Environ. Microbiol. 77(2) (2011) 460-470. https://doi.org/10.1128/AEM.00521-10.

[41]

L. Chen, R.M. Daniel, T. Coolbear. Detection and impact of protease and lipase activities in milk and milk powders, Int. Dairy J. 13(4) (2003) 255-275. https://doi.org/10.1016/S0958-6946(02)00171-1.

[42]

P.K. Guerreiro, M.R.F. Machado, G.C. Braga, et al., Microbiological quality of milk through preventive techniques in the handling of production, Ciênc.e Agrotecnologia 29(1) (2005) 216-222. https://doi.org/10.1590/S1413-70542005000100027.

[43]

R. Ding, M. Li, Y. Zou, et al., Effect of normal and strict anaerobic fermentation on physicochemical quality and metabolomics of yogurt, Food Biosci. 46 (2022) 101368. https://doi.org/10.1016/j.fbio.2021.101368.

Food Science and Human Wellness
Pages 1279-1286
Cite this article:
Ding R, Yang S, Geng L, et al. Characterization of the core microflora and nutrient composition in packaged pasteurized milk products during storage. Food Science and Human Wellness, 2023, 12(4): 1279-1286. https://doi.org/10.1016/j.fshw.2022.10.010

557

Views

42

Downloads

6

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 18 April 2021
Revised: 21 June 2021
Accepted: 12 September 2021
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return