AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (915.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

4-Hydroxycinnamic acid attenuates neuronal cell death by inducing expression of plasma membrane redox enzymes and improving mitochondrial functions

Sujin Parka,1YoonA Kima,1Jaewang LeeaHyunsoo SeoaSang-Jip NambDong-Gyu JocDong-Hoon Hyuna( )
Department of Life Science, Ewha Womans University, Seoul 03760, South Korea
Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, South Korea
School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea

1 These authors contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Many approaches to neurodegenerative diseases that focus on amyloid-β clearance and gene therapy have not been successful. Some therapeutic applications focus on enhancing neuronal cell survival during the pathogenesis of neurodegenerative diseases, including mitochondrial dysfunction. Plasma membrane (PM) redox enzymes are crucial in maintaining cellular physiology and redox homeostasis in response to mitochondrial dysfunction. Neurohormetic phytochemicals are known to induce the expression of detoxifying enzymes under stress conditions. In this study, mechanisms of neuroprotective effects of 4-hydroxycinnamic acid (HCA) were examined by analyzing cell survival, levels of abnormal proteins, and mitochondrial functions in two different neuronal cells. HCA protected two neuronal cells exhibited high expression of PM redox enzymes and the consequent increase in the NAD+/NADH ratio. Cells cultured with HCA showed delayed apoptosis and decreased oxidative/nitrative damage accompanied by decreased ROS production in the mitochondria. HCA increased the mitochondrial complexes I and II activities and ATP production. Also, HCA increased mitochondrial fusion and decreased mitochondrial fission. Overall, HCA maintains redox homeostasis and energy metabolism under oxidative/metabolic stress conditions. These findings suggest that HCA could be a promising therapeutic approach for neurodegenerative diseases.

References

[1]

B.C. Riedel, P.M. Thompson, R.D. Brinton, APOE and sex: triad of risk of Alzheimer's disease, J. Steroid Biochem. Mol. Biol. 160 (2016) 134-147. https://doi.org/10.1016/j.jsbmb.2016.03.012.

[2]

M. Rodriguez, C. Rodriguez-Sabate, I. Morales, et al., Parkinson's disease as a result of aging, Aging Cell 14 (2015) 293-308. https://doi.org/10.1111/acel.12312.

[3]

T. Niccoli, L. Partridge, A.M. Isaacs, Ageing as a risk factor for ALS/FTD, Hum. Mol. Genet. 26 (2017) R105-R113. https://doi.org/10.1093/hmg/ddx247.

[4]

J. Fan, T.M. Dawson, V.L. Dawson, Cell death mechanisms of neurodegeneration, Adv. Neurobiol. 15 (2017) 403-425. https://doi.org/10.1007/978-3-319-57193-5_16.

[5]

C.A. Ross, M.A. Poirier, Protein aggregation and neurodegenerative disease, Nat. Med. 10. (2004) S10-17. https://doi.org/10.1038/nm1066.

[6]

A. Tramutola, C. Lanzillotta, M. Perluigi, et al., Oxidative stress, protein modification and Alzheimer disease, Brain Res. Bull. 133 (2017) 88-96. https://doi.org/10.1016/j.brainresbull.2016.06.005.

[7]

J. Cummings, G. Lee, K. Zhong, et al., Alzheimer's disease drug development pipeline: 2021. Alzheimers Dement. (N.Y. ) 7 (2021) e12179. https://doi.org/10.1002/trc2.12179.

[8]

R. Cacabelos, Parkinson's disease: from pathogenesis to pharmacogenomics, Int. J. Mol. Sci. 18 (2017) 551. https://doi.org/10.3390/ijms18030551.

[9]

R. Macdonald, K. Barnes, C. Hastings, et al., Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochem. Soc. Trans. 46 (2018) 891-909. https://doi.org/10.1042/BST20170501.

[10]

B. Oskarsson, T.F. Gendron, N.P. Staff, Amyotrophic lateral sclerosis: an update for 2018, Mayo Clin. Proc. 93 (2018) 1617-1628. https://doi.org/10.1016/j.mayocp.2018.04.007.

[11]

C.A. Cobb, M.P. Cole, Oxidative and nitrative stress in neurodegeneration, Neurobiol. Dis. 84 (2015) 4-21. https://doi.org/10.1016/j.nbd.2015.04.020.

[12]

S.R. Danielson, J.K. Andersen, Oxidative and nitrative protein modifications in Parkinson's disease, Free Radic. Biol. Med. 44 (2008) 1787-1794. https://doi.org/10.1016/j.freeradbiomed.2008.03.005.

[13]

L. Calderon-Garciduenas, Smoking and cerebral oxidative stress and air pollution: a dreadful equation with particulate matter involved and one more powerful reason not to smoke anything!, J. Alzheimer's Dis. 54 (2016) 109-112. https://doi.org/10.3233/JAD-160510.

[14]

M. Hayashi, S. Araki, J. Kohyama, et al., Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome, Brain Dev. 27 (2005) 34-38. https://doi.org/10.1016/j.braindev.2004.04.001.

[15]

A. Grimm, A. Eckert, Brain aging and neurodegeneration: from a mitochondrial point of view, J. Neurochem. 143 (2017) 418-431. https://doi.org/10.1111/jnc.14037.

[16]

J.K. Andersen, Oxidative stress in neurodegeneration: cause or consequence?, Nat. Med. 10 (2004) 18-25. https://doi.org/10.1038/nrn1434.

[17]

A. Federico, E. Cardaioli, P. da Pozzo, et al., Mitochondria, oxidative stress and neurodegeneration, J. Neurol. Sci. 322 (2012) 254-262. https://doi.org/10.1016/j.jns.2012.05.030.

[18]

B. Dannenmann, S. Lehle, D.G. Hildebrand, et al., High glutathione and glutathione peroxidase-2 levels mediate cell-type-specific DNA damage protection in human induced pluripotent stem cells, Stem Cell Rep. 4 (2015)886-898. https://doi.org/10.1016/j.stemcr.2015.04.004.

[19]

R. Hardeland, Melatonin and the electron transport chain, Cell. Mol. Life Sci. 74 (2017) 3883-3896. https://doi.org/10.1007/s00018-017-2615-9.

[20]

G. Monteiro, A.J. Kowaltowski, M.H. Barros, et al., Glutathione and thioredoxin peroxidases mediate susceptibility of yeast mitochondria to Ca2+-induced damage, Arch. Biochem. Biophys. 425 (2004) 14-24. https://doi.org/10.1016/j.abb.2004.03.005.

[21]

M.J. Keogh, P.F. Chinnery, Mitochondrial DNA mutations in neurodegeneration, Biochim. Biophys. Acta 1847 (2015) 1401-1411. https://doi.org/10.1016/j.bbabio.2015.05.015.

[22]

A. Maruszak, K. Gaweda-Walerych, I. Soltyszewski, et al., Mitochondrial DNA in pathogenesis of Alzheimer's and Parkinson's diseases, Acta Neurobiol. Exp. (Wars) 66 (2006) 153-176.

[23]

P. Ghiasi, S. Hosseinkhani, A. Noori, et al., Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients, Neurol. Res. 34 (2012) 297-303. https://doi.org/10.1179/1743132812Y.0000000012.

[24]

E.J. Lesnefsky, T.I. Gudz, S. Moghaddas, et al., Aging decreases electron transport complex Ⅲ activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site, J. Mol. Cell. Cardiol. 33 (2001) 37-47. https://doi.org/10.1006/jmcc.2000.1273.

[25]

F.M. Menzies, M.R. Cookson, R.W. Taylor, et al., Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis, Brain 125(2002) 1522-1533.

[26]

I.G. Onyango, S.M. Khan, J.P. Bennett, Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases, Front. Biosci. (Landmark Ed. ) 22(2017) 854-872. https://doi.org/10.2741/4521.

[27]

T. Feng, T. Yamashita, Y. Zhai, et al., Chronic cerebral hypoperfusion accelerates Alzheimer's disease pathology with the change of mitochondrial fission and fusion proteins expression in a novel mouse model, Brain Res. 1696 (2018) 63-70. https://doi.org/10.1016/j.brainres.2018.06.003.

[28]

G.K. Ganjam, K. Bolte, L.A. Matschke, et al., Mitochondrial damage by alpha-synuclein causes cell death in human dopaminergic neurons, Cell Death. Dis. 10 (2019) 865. https://doi.org/10.1038/s41419-019-2091-2.

[29]

M. Manczak, R. Kandimalla, X. Yin, et al., Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer's disease, Hum. Mol. Genet. 27 (2018) 1332-1342. https://doi.org/10.1093/hmg/ddy0424835224.

[30]

X. Wang, B. Su, S.L. Siedlak, et al., Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins, Proc. Natl. Acad. Sci. USA 105 (2008)19318-19323. https://doi.org/10.1073/pnas.0804871105.

[31]

M. Gomez-Lazaro, N.A. Bonekamp, M.F. Galindo, et al., 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells, Free Radic. Biol. Med. 44 (2008) 1960-1969. https://doi.org/10.1016/j.freeradbiomed.2008.03.009.

[32]

K.L. Carpenter, I. Jalloh, P.J. Hutchinson, Glycolysis and the significance of lactate in traumatic brain injury, Front. Neurosci. 9 (2015) 112. https://doi.org/10.3389/fnins.2015.00112.

[33]

D.H. Hyun, S.S. Emerson, D.G. Jo, et al., Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging, Proc. Natl. Acad. Sci. USA 103 (2006) 19908-19912. https://doi.org/10.1073/pnas.0608008103.

[34]

D.H. Hyun, N.D. Hunt, S.S. Emerson, et al., Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria, J. Neurochem. 100 (2007) 1364-1374. https://doi.org/10.1111/j.1471-4159.2006.04411.x.

[35]

D.H. Hyun, Plasma membrane redox enzymes: new therapeutic targets for neurodegenerative diseases, Arch. Pharm. Res. 42 (2019) 436-445. https://doi.org/10.1007/s12272-019-01147-8.

[36]

F.L. Crane, Biochemical functions of coenzyme Q10, J. Am. Coll. Nutr. 20(2001) 591-598. https://doi.org/ 10.1080/07315724.2001.10719063.

[37]

M. Turunen, J. Olsson, G. Dallner, Metabolism and function of coenzyme Q, Biochim. Biophys. Acta 1660 (2004) 171-199. https://doi.org/10.1016/j.bbamem.2003.11.012.

[38]

R. de Cabo, R. Cabello, M. Rios, et al., Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver, Exp. Gerontol. 39 (2004) 297-304. https://doi.org/10.1016/j.exger.2003.12.003.

[39]

D.H. Hyun, M.R. Mughal, H. Yang, et al., The plasma membrane redox system is impaired by amyloid beta-peptide and in the hippocampus and cerebral cortex of 3xTgAD mice, Exp. Neurol. 225 (2010) 423-429. https://doi.org/10.1016/j.expneurol.2010.07.020.

[40]

M. Bond, G. Rogers, J. Peters, et al., The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of Technology Appraisal No. 111): a systematic review and economic model, Health Technol. Assess. 16 (2012) 1-470. https://doi.org/10.3310/hta16210.

[41]

S.G. Di Santo, F. Prinelli, F. Adorni, et al., A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to severity of Alzheimer's disease, J. Alzheimer's Dis. 35 (2013) 349-361. https://doi.org/10.3233/JAD-122140.

[42]

R. Libro, S. Giacoppo, T. Soundara Rajan, et al., Natural phytochemicals in the treatment and prevention of dementia: an overview, Molecules 21 (2016)518. https://doi.org/10.3390/molecules21040518.

[43]

S.W. Scheff, M.A. Ansari, Natural compounds as a therapeutic intervention following traumatic brain injury: the role of phytochemicals, J. Neurotrauma 34 (2017) 1491-1510. https://doi.org/10.1089/neu.2016.4718.

[44]

M.M. El Tabaa, S.S. Sokkar, E.S. Ramadan, et al., Neuroprotective role of Ginkgo biloba against cognitive deficits associated with Bisphenol A exposure: an animal model study, Neurochem. Int. 108 (2017) 199-212. https://doi.org/10.1016/j.neuint.2017.03.019.

[45]

C. Guidetti, S. Paracchini, S. Lucchini, et al., Prevention of neuronal cell damage induced by oxidative stress in-vitro: effect of different Ginkgo biloba extracts, J. Pharm. Pharmacol. 53 (2001) 387-392. https://doi.org/10.1211/0022357011775442.

[46]

K. Apostolopoulou, D. Konstantinou, R. Alataki, et al., Ischemia-reperfusion injury of sciatic nerve in rats: protective role of combination of vitamin C with E and tissue plasminogen activator, Neurochem. Res. 43 (2018) 650-658. https://doi.org/10.1007/s11064-017-2465-8.

[47]

T.B. Shea, F.J. Ekinci, D. Ortiz, et al., Efficacy of vitamin E, phosphatidyl choline and pyruvate on Abeta neurotoxicity in culture, J. Nutr. Health Aging 7 (2003) 252-255.

[48]

A. Prakash, A. Kumar, Lycopene protects against memory impairment and mito-oxidative damage induced by colchicine in rats: an evidence of nitric oxide signaling, Eur. J. Pharmacol. 721 (2013) 373-381. https://doi.org/10.1016/j.ejphar.2013.08.016.

[49]

A. Prema, U. Janakiraman, T. Manivasagam, et al., Neuroprotective effect of lycopene against MPTP induced experimental Parkinson's disease in mice, Neurosci. Lett. 599 (2015) 12-19. https://doi.org/10.1016/j.neulet.2015.05.024.

[50]

S. Bastianetto, C. Menard, R. Quirion, Neuroprotective action of resveratrol, Biochim. Biophys. Acta 1852 (2015) 1195-1201. https://doi.org/10.1016/j.bbadis.2014.09.011.

[51]

L.M.S. Lopez, R.J. Dempsey, R. Vemuganti, Resveratrol neuroprotection in stroke and traumatic CNS injury, Neurochem. Int. 89 (2015) 75-82. https://doi.org/10.1016/j.neuint.2015.08.009.

[52]

C. Bonnesen, I.M. Eggleston, J.D. Hayes, Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines, Cancer Res. 61 (2001) 6120-6130.

[53]

A. Siebert, V. Desai, K. Chandrasekaran, et al., Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures, J. Neurosci. Res. 87 (2009) 1659-1669. https://doi.org/10.1002/jnr.21975.

[54]

T.C. Hsieh, J.M. Wu, Suppression of cell proliferation and gene expression by combinatorial synergy of EGCG, resveratrol and gamma-tocotrienol in estrogen receptor-positive MCF-7 breast cancer cells, Int. J. Oncol. 33 (2008)851-859.

[55]

X. Jing, J. Zhang, Z. Huang, et al., The involvement of Nrf2 antioxidant signalling pathway in the protection of monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats by (+)-catechin hydrate, Free Radic. Res. 52 (2018) 402-414. https://doi.org/10.1080/10715762.2018.1437914.

[56]

S.B. Lee, K. Kang, S. Oidovsambuu, et al., A polyacetylene from Gymnaster koraiensis exerts hepatoprotective effects in vivo and in vitro, Food Chem. Toxicol. 48 (2010) 3035-3041. https://doi.org/10.1016/j.fct.2010.07.035

[57]

S.B. Lee, C.Y. Kim, H.J. Lee, et al., Induction of the phase Ⅱ detoxification enzyme NQO1 in hepatocarcinoma cells by lignans from the fruit of Schisandra chinensis through nuclear accumulation of Nrf2, Planta Med. 75(2009) 1314-1318. https://doi.org/10.1055/s-0029-1185685.

[58]

A.K. Jaiswal, Regulation of genes encoding NAD(P)H: quinone oxidoreductases, Free Radic. Biol. Med. 29 (2000) 254-262. https://doi.org/10.1016/s0891-5849(00)00306-3.

[59]

P. Nioi, J.D. Hayes, Contribution of NAD(P)H: quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors, Mutat. Res. 555 (2004) 149-171. https://doi.org/10.1016/j.mrfmmm.2004.05.023.

[60]

Z. Quinde-Axtell, B.K. Baik, Phenolic compounds of barley grain and their implication in food product discoloration, J. Agric. Food Chem. 54 (2006)9978-9984. https://doi.org/10.1021/jf060974w.

[61]

J.W. Ko, H.J. Kwon, C.S. Seo, et al., 4-Hydroxycinnamic acid suppresses airway inflammation and mucus hypersecretion in allergic asthma induced by ovalbumin challenge, Phytother. Res. 34 (2020) 624-633. https://doi.org/10.1002/ptr.6553.

[62]

S.H. Park, J.W. Ko, N.R. Shin, et al., 4-Hydroxycinnamic acid protects mice from cigarette smoke-induced pulmonary inflammation via MAPK pathways, Food Chem. Toxicol. 110 (2017) 151-155. https://doi.org/10.1016/j.fct.2017.10.027.

[63]

T. Ueda, T. Ito, H. Kurita, et al., p-Coumaric acid has protective effects against mutant copper-zinc superoxide dismutase 1 via the activation of autophagy in N2a cells, Int. J. Mol. Sci. 20 (2019) 2942. https://doi.org/10.3390/ijms20122942.

[64]

Y. Yue, P. Shen, Y. Xu, et al., p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans, J. Sci. Food Agric. 99(2019) 1190-1197. https://doi.org/10.1002/jsfa.9288.

[65]

R. Sakamula, W. Thong-Asa, Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries, Metab. Brain Dis. 33 (2018)765-773. https://doi.org/10.1007/s11011-018-0185-7.

[66]

A. Abdel-Moneim, A.I. Yousef, S.M. Abd El-Twab, et al., Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats, Metab. Brain Dis. 32 (2017) 1279-1286. https://doi.org/10.1007/s11011-017-0039-8.

[67]

C.L. Hsu, C.H. Wu, S.L. Huang, et al., Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats, J. Agric. Food Chem. 57 (2009) 425-431. https://doi.org/10.1021/jf802715t.

[68]

M. Moniruzzaman, C. Yung An, P.V. Rao, et al., Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: determination of antioxidant capacity, Biomed. Res. Int. 2014 (2014) 737490. https://doi.org/10.1155/2014/737490.

[69]

D.H. Hyun, J. Kim, C. Moon, et al., The plasma membrane redox enzyme NQO1 sustains cellular energetics and protects human neuroblastoma cells against metabolic and proteotoxic stress, Age (Dordr) 34 (2012) 359-370. https://doi.org/10.1007/s11357-011-9245-1.

[70]

D.H. Hyun, G.H. Lee, Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics, Age (Dordr) 37 (2015)122. https://doi.org/10.1007/s11357-015-9859-9.

[71]

J. Kim, S.K. Kim, H.K. Kim, et al., Mitochondrial function in human neuroblastoma cells is up-regulated and protected by NQO1, a plasma membrane redox enzyme, PLoS One 8 (2013) e69030. https://doi.org/10.1371/journal.pone.0069030.

[72]

H. Elkon, E. Melamed, D. Offen, 6-Hydroxydopamine increases ubiquitinconjugates and protein degradation: implications for the pathogenesis of Parkinson's disease, Cell Mol. Neurobiol. 21 (2001) 771-781. https://doi.org/ 10.1023/a:1015160323009.

[73]

Y. Li, K.B. Duffy, M.A. Ottinger, et al., GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer's disease, J. Alzheimer's Dis. 19 (2010) 1205-1219. https://doi.org/10.3233/JAD-2010-1314.

[74]

O. Sadan, M. Bahat-Stromza, Y. Barhum, et al., Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease, Stem Cells Dev. 18 (2009) 1179-1190. https://doi.org/10.1089/scd.2008.0411.

[75]

M. He, J. Liu, S. Cheng, et al., Differentiation renders susceptibility to excitotoxicity in HT22 neurons, Neural Regen. Res. 8 (2013) 1297-1306. https://doi.org/10.3969/j.issn.1673-5374.2013.14.006.

[76]

J. Liu, L. Li, W.Z. Suo, HT22 hippocampal neuronal cell line possesses functional cholinergic properties, Life Sci. 84 (2009) 267-271. https://doi.org/10.1016/j.lfs.2008.12.008.

[77]

G.S. Kelner, M. Lee, M.E. Clark, et al., The copper transport protein Atox1 promotes neuronal survival, J. Biol. Chem. 275 (2000) 580-584.

[78]

M. Lee, D.H. Hyun, B. Halliwell, et al., Effect of overexpression of wildtype and mutant Cu/Zn-superoxide dismutases on oxidative stress and cell death induced by hydrogen peroxide, 4-hydroxynonenal or serum deprivation: potentiation of injury by ALS-related mutant superoxide dismutases and protection by Bcl-2, J. Neurochem. 78 (2001) 209-220.

[79]

L. Lyras, P.J. Evans, P.J. Shaw, et al., Oxidative damage and motor neurone disease difficulties in the measurement of protein carbonyls in human brain tissue, Free Radic. Res. 24 (1996) 397-406.

[80]

A.Z. Reznick, L. Packer, Oxidative damage to proteins: spectrophotometric method for carbonyl assay, Methods Enzymol. 233 (1994) 357-363.https://doi.org/10.1016/s0076-6879(94)33041-7.

[81]

D. Huang, B. Ou, R.L. Prior, The chemistry behind antioxidant capacity assays, J.Agric. Food Chem. 253 (2005) 1841-1856. https://doi.org/10.1021/jf030723c.

[82]

J.H. Shim, S.H. Yoon, K.H. Kim, et al., The antioxidant Trolox helps recovery from the familial Parkinson's disease-specific mitochondrial deficits caused by PINK1- and DJ-1-deficiency in dopaminergic neuronal cells, Mitochondrion 11 (2011) 707-715. https://doi.org/10.1016/j.mito.2011.05.013.

[83]
X. Li, J.M. May, Catalase-dependent measurement of H2O2 in intact mitochondria, Mitochondrion 1 (2002) 447-453. https://doi.org/S1567-7249(02)00010-7.
[84]

M. Zhou, Z. Diwu, N. Panchuk-Voloshina, et al., A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases, Anal. Biochem. 253 (1997) 162-168.https://doi.org/10.1006/abio.1997.2391.

[85]

M.P. Mattson, A. Cheng, Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses, Trends Neurosci. 29 (2006)632-639. https://doi.org/10.1016/j.tins.2006.09.001.

[86]

Z. Jia, H. Zhu, H.P. Misra, et al., Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H-1, 2-dithiole-3-thione in SHSY5Y neuroblastoma cells and primary human neurons: protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxide, Brain Res. 1197 (2008) 159-169.https://doi.org/10.1016/j.brainres.2007.12.044.

[87]

H. Zhu, Z. Jia, J.S. Strobl, et al., Potent induction of total cellular and mitochondrial antioxidants and phase 2 enzymes by cruciferous sulforaphane in rat aortic smooth muscle cells: cytoprotection against oxidative and electrophilic stress, Cardiovasc. Toxicol. 8 (2008) 115-125.https://doi.org/10.1007/s12012-008-9020-4.

[88]

H. Zhu, Z. Jia, K. Zhou, et al., Cruciferous dithiolethione-mediated coordinated induction of total cellular and mitochondrial antioxidants and phase 2 enzymes in human primary cardiomyocytes: cytoprotection against oxidative/electrophilic stress and doxorubicin toxicity, Exp. Biol. Med.(Maywood) 234 (2009) 418-429. https://doi.org/10.3181/0811-RM-340.

[89]

J. Marin-Garcia, A.T. Akhmedov, G.W. Moe, Mitochondria in heart failure: the emerging role of mitochondrial dynamics, Heart Fail. Rev. 18 (2013)439-456. https://doi.org/10.1007/s10741-012-9330-2.

[90]

K. Venderova, D.S. Park, Programmed cell death in Parkinson's disease, Cold Spring Harb. Perspect. Med. 2 (2012) a009365. https://doi.org/10.1101/cshperspect.a009365.

[91]

F. Yu, E. Abdelwahid, T. Xu, et al., The role of mitochondrial fusion and fission in the process of cardiac oxidative stress, Histol. Histopathol. 35(2020) 541-552. https://doi.org/10.14670/HH-18-191.

[92]

J.A. Pradeepkiran, P.H. Reddy, Defective mitophagy in Alzheimer's disease, Ageing Res. Rev. 64 (2020) 101191. https://doi.org/10.1016/j.arr.2020.101191.

Food Science and Human Wellness
Pages 1287-1299
Cite this article:
Park S, Kim Y, Lee J, et al. 4-Hydroxycinnamic acid attenuates neuronal cell death by inducing expression of plasma membrane redox enzymes and improving mitochondrial functions. Food Science and Human Wellness, 2023, 12(4): 1287-1299. https://doi.org/10.1016/j.fshw.2022.10.011

658

Views

70

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 03 February 2022
Revised: 24 March 2022
Accepted: 07 May 2022
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return