PDF (962 KB)
Collect
Submit Manuscript
Review Article | Open Access

A narrative review on inhibitory effects of edible mushrooms against malaria and tuberculosis-the world's deadliest diseases

Ashaimaa Y. MoussaaBaojun Xub()
Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
Show Author Information

Abstract

The isolated secondary metabolites from 39 edible mushrooms are reported, among which 107 compounds were active, 61 demonstrated antitubercular activities with IC50 range of 0.2–50 µg/mL and 46 manifested antimalarial effects with IC50 range of 0.061–36 µg/mL. While more than 2000 strains of edible mushrooms are identified, this review shows the paucity of research in these rich organisms featuring a vital culinary ingredient worldwide. A thorough search was conducted on basidiomycetes to discuss the chemistry and biology of the isolated compounds, structure activity relationships (SAR) as well as the cytotoxicity profiles of, primarily, the active anti-plasmodial and antitubercular molecules. With a safe cellular profile, lanostane triterpenoids were found to be the only molecules with combined activities against both diseases. SAR correlations reviewed here indicated the significance of 3β- and 7α-hydroxylation in the anti-tuberculosis activity and the terminal unsaturated moiety between C-4 and C-28 in the antimalarial activity in the same terpene skeleton. This review will attract the attention of medicinal chemists, and food scientists to optimize and rationalize the use of mushrooms both as unexploited sources of novel molecules and as nutraceuticals to treat two of the deadliest infectious diseases, malaria, and tuberculosis.

References

[1]

A.Y. Moussa, H.A. Sobhy, O.A. Eldahshan, et al., Caspicaiene: a new kaurene diterpene with anti-tubercular activity from an Aspergillus endophytic isolate in Gleditsia caspia desf, Nat. Prod. Res. (2020) 1-12. https://doi.org/10.1080/14786419.2020.1824222.

[2]

K. Liu, T. Li, A. Vongpradith, et al., Identification and prediction of tuberculosis in Eastern China: analyses from 10-year population-based notification data in Zhejiang province, China, Sci. Rep. 10 (2020) 1-10. https://doi.org/10.1038/s41598-020-64387-5.

[3]
M.L. Leonard. Mushrooms as medicinals: a literature review, North American Mycological Association 23 (2014) 25-30. http://www.namyco.org/publications/mcilvainea/v23/mushrooms_as_medicinals.html.
[4]

A. Mwakingwe-Omari, S.A. Healy, J. Lane, et al., Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity, Nature 595 (2021)289-294. https://doi.org/10.1038/s41586-021-03684-z.

[5]

M. Maiolini, S. Gause, J. Taylor, et al., The war against tuberculosis: a review of natural compounds and their derivatives, Molecules 25 (2020). https://doi.org/10.3390/molecules25133011.

[6]

I.N. Nkumama, F.H.A. Osier, Malaria vaccine roller coaster, Nat. Microbiol. 6 (2021) 1345-1346. https://doi.org/10.1038/s41564-021-00982-0.

[7]

J.K. Zjawiony, Antitubercular activity of mushrooms (Basidiomycetes) and their metabolites, Nat. Prod. Commun. 2 (2007) 315-318. https://doi.org/10.1177/1934578X0700200314.

[8]

E. Callaway, TB diagnostic test fails to curb cases, Nature 551 (2018) 424.

[9]

K. Arpha, C. Phosri, N. Suwannasai, et al., Astraodoric acids A-D: new lanostane triterpenes from edible mushroom Astraeus odoratus and their anti-Mycobacterium tuberculosis H37Ra and cytotoxic activity, J. Agric. Food Chem. 60 (2012) 9834-9841. https://doi.org/10.1021/jf302433r.

[10]

M.J. Alves, I.C.F.R. Ferreira, I. Lourencßo, et al., Wild mushroom extracts potentiate the action of standard antibiotics against multiresistant bacteria, J. Appl. Microbiol. 116 (2014) 32-38. https://doi.org/10.1111/jam.12348.

[11]

S.S. Chiang, L.T. Wang, S.Y. Chen, et al., Antibacterial and antiinflammatory activities of mycelia of a medicinal mushroom from Taiwan, Taiwanofungus salmoneus (higher Basidiomycetes), Int. J. Med. Mushrooms 15 (2013) 39-47. https://doi.org/10.1615/intjmedmushr.v15.i1.50.

[12]

A.Y. Moussa, C. Lambert, T.E.B. Stradal, et al., New peptaibiotics and a cyclodepsipeptide from Ijuhya vitellina: isolation, identification, cytotoxic and nematicidal activities, Antibiotics (2020) 1-13. https://doi.org/10.3390/antibiotics9030132.

[13]

O.E. Afieroho, X.S. Noundou, C.P. Onyia, et al., Antiplasmodial activity of the n-hexane extract from Pleurotus ostreatus (Jacq. ex. Fr) P. Kumm. Turkish, J. Pharm. Sci. 16 (2019) 37-42. https://doi.org/10.4274/tjps.18894.

[14]

S.A., Ashraf, A.O., Elkhalifa, A.J., Siddiqui, et al., Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential, Molecules 25 (2020). https://doi.org/10.3390/molecules25122735.

[15]

H. Li, Y. Tian, N. Menolli Jr, et al., Reviewing the world's edible mushroom species: a new evidence-based classification system, Compr. Rev. Food Sci. F. 20 (2021) 1982-2014. https://doi.org/10.1111/1541-4337.12708.

[16]

E.S.S. Tan, T.K. Leo, C.K. Tan, Effect of tiger milk mushroom (Lignosus rhinocerus) supplementation on respiratory health, immunity and antioxidant status: an open-label prospective study, Sci. Rep. 11 (2021) 1-10. https://doi.org/10.1038/s41598-021-91256-6.

[17]

W.A. Elkhateeb, G.M. Daba, P.W. Thomas, et al., Medicinal mushrooms as a new source of natural therapeutic bioactive compounds, Egypt. Pharm. J. 18 (2019) 88-101. https://doi.org/10.4103/epj.epj_17_19.

[18]
G.M. Halpern, Healing mushrooms, Mycologist (2017).
[19]

T. Fernandes, C. Garrine, J. Ferr, et al., Mushroom nutrition as preventative healthcare in Sub-Saharan Africa, Appl. Sci. 11(2021) 4221. https://doi.org/10.3390/app11094221.

[20]

A.G. Niego, S. Rapior, N. Thongklang, et al., Macrofungi as a nutraceutical source: promising bioactive compounds and market value, J. Fungus 7 (2021). https://doi.org/10.3390/jof7050397.

[21]

D.K. Patel, S.D. Dutta, K. Ganguly, et al., Mushroom-derived bioactive molecules as immunotherapeutic agents: a review, Molecules 26 (2021)1359. https://doi.org/10.3390/molecules26051359.

[22]

N Roberto, Polyacetylenes from terrestrial plants and fungi: recent phytochemical and biological advances, Fitoterapia 106 (2015) 92-109. https://doi.org/10.1016/j.fitote.2015.08.011.

[23]

W.J. Robbins, F. Kavanagh, A. Hervey, Antibiotics from Basidiomycetes: Ⅱ. Polyporus biformis, Proc. Natl. Acad. Sci. U.S.A. 33 (1947) 176-182. https://doi.org/10.1073/pnas.33.6.176.

[24]

D.V. Kuklev, A.J. Domb, V.M. Dembitsky, Bioactive acetylenic metabolites, Phytomedicine 20 (2013) 1145-1159. https://doi.org/10.1016/j.phymed.2013.06.009.

[25]

F. Kavanagh, A. Hervey, W.J. Robbins, Antibiotic substances from Basidiomycetes: V. Poria Corticola, Poria Tenuis and an unidentified Basidiomycete, Proc. Natl. Acad. Sci. U.S.A. 36 (1950) 1-7. https://doi.org/10.1073/pnas.36.1.1.

[26]

M. Stadler, D. Hoffmeister, Fungal natural products: the mushroom perspective, Front. Microbiol. (2015). https://doi.org/10.3389/fmicb.2015.00127

[27]

W.J. Robbins, F. Kavanagh, A. Hervey, Antibiotic substances from Basidiomycetes: Ⅰ. Pleurotus griseus, Proc. Natl. Acad. Sci. U.S.A. 33 (1947)171-176. https://doi.org/10.1073/pnas.33.6.171.

[28]

S.M. Shipley, A.L. Barr, S.J. Graf, et al., Development of a process for the production of the anticancer lead compound pleurotin by fermentation of Hohenbuehelia atrocaerulea, J. Ind. Microbiol. Biotechnol. (2006) 463-468. https://doi.org/10.1007/s10295-006-0089-0.

[29]

T. Degenkolb, A. Vilcinskas, Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part Ⅱ: metabolites from nematophagous basidiomycetes and nonnematophagous fungi, Appl. Microbiol. Biotechnol. 100 (2016) 3813-3824. https://doi.org/10.1007/s00253-015-7234-5.

[30]

D. Chatterjee, D. Halder, U. Chakraborty, et al., Antimycobacterial activities of an edible mushroom extract and its synergy with the standard antituberculous drugs, J. Clin. Diagnostic Res. 12 (2018) DC37-DC41. https://doi.org/10.7860/JCDR/2018/35569.11640.

[31]

D.K. Rahi, D. Malik, Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance, J. Mycology (2016) 1-18. https://doi.org/10.1155/2016/7654123

[32]

S.K. Deshmukh, S.A. Verekar, B.N. Ganguli, Antimycobacterials from fungi, Fungi (2018) 41-69. https://doi.org/10.1201/b19958-6.

[33]

R. Stanikunaite, M.M. Radwan, J.M. Trappe, et al., Lanostane-type triterpenes from the mushroom Astraeus pteridis with antituberculosis activity, J. Nat. Prod. 71 (2008) 2077-2079. https://doi.org/10.1021/np800577p.

[34]

K. Rugutt, J. Rugutt, Relationships between molecular properties and antimycobacterial activities of steroids, Nat. Prod. Rep. 16 (2002) 107-113. https://doi.org/10.1080/10575630290020000.

[35]

N. Sato, Q. Zhang, M. Hattori, Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from Ganoderma sinense, Chem. Pharm. Bull. 57 (2009) 1076-1080.

[36]

Q. Zhang, F. Zuo, N. Nakamoura, et al., Metabolism and pharmacokinetics in rats of ganoderiol F, a highly cytotoxic and antitumor triterpene from Ganoderma lucidum, J. Nat. Med. (2009) 304-310. https://doi.org/10.1007/s11418-009-0337-5.

[37]

M. Isaka, P. Chinthanom, M. Sappan, et al., Antitubercular activity of mycelium-associated Ganoderma lanostanoids, J. Nat. Prod. 80 (2017) 1361-1369. https://doi.org/10.1021/acs.jnatprod.6b00973.

[38]

L. Lin, M. Shiao, Seven new triterpenes from Ganoderma lucidum, Society 51 (1988) 918-924.

[39]

M.S. Shiao, L.J. Lin, S.F. Yeh, et al., Two new triterpenes of the fungus Ganoderma lucidum, J. Nat. Prod. 50 (1987) 886-890. https://doi.org/10.1021/np50053a019.

[40]

M.S. Shiao, L.J. Lin, S.F. Yeh, Triterpenes in Ganoderma lucidum, Phytochemistry 27 (1988) 2911-2914.

[41]

M. Hirotani, C. Ino, T. Furuya, et al., Ganoderic acids T, S and R, new triterpenes from the cultured mycelia of Ganoderma lucidum, Chem. Pharm. Bull. 34 (1986) 430-433.

[42]

C.H. Li, P.Y. Chena, U.M. Chang, et al., Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells, Life Sci. 77 (2005) 252-265. https://doi.org/10.1016/j.lfs.2004.09.045.

[43]

M. Isaka, P. Chinthanom, M. Sappan, et al., Antitubercular lanostane triterpenes from cultures of the Basidiomycete Ganoderma sp. BCC 16642, J. Nat. Prod. 79 (2016) 161-169. https://doi.org/10.1021/acs.jnatprod.5b00826.

[44]

M. Isaka, P. Chinthanom, S. Kongthong, et al., Lanostane triterpenes from cultures of the Basidiomycete Ganoderma orbiforme BCC 22324, Phytochemistry 87 (2013) 133-139. https://doi.org/10.1016/j.phytochem.2012.11.022..

[45]

L. Shi, A. Ren, D. Mu, et al., Current progress in the study on biosynthesis and regulation of ganoderic acids, Appl. Microbiol. Biotechnol. 88 (2010)1243-1251. https://doi.org/10.1007/s00253-010-2871-1.

[46]

J.W. Xu, W. Zhao, J.J. Zhong, Biotechnological production and application of ganoderic acids, Appl. Microbiol. Biotechnol. 87 (2010) 457-466. https://doi.org/10.1007/s00253-010-2576-5.

[47]

R.R.M. Paterson, Ganoderma A therapeutic fungal biofactory, Phytochemistry 67 (2006) 1985-2001. https://doi.org/10.1016/j.phytochem.2006.07.004.

[48]

H.P. Chen, Z.Z. Zhao, Z.H. Li, et al., Anti-proliferative and antiinflammatory lanostane triterpenoids from the polish edible mushroom Macrolepiota procera, J. Agric. Food Chem. 66 (2018) 3146-3154. https://doi.org/10.1021/acs.jafc.8b00287.

[49]

S. Hettwer, S. Bänziger, B. Suter, et al., Grifolin derivatives from Albatrellus ovinus as TRPV1 receptor blockers for cosmetic applications, Int. J. Cosmet. Sci. 39 (2017) 379-385. https://doi.org/10.1111/ics.12385.

[50]

Y. Hirata, K. Nakanishi, Grifolin, an antibiotic from a basidiomycete, J. Biol. Chem. 184 (1950) 135-143. https://doi.org/10.1016/s0021-9258(19)51132-2.

[51]

T. Akihisa, S.G. Franzblau, H. Tokuda, et al., Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus, Chem. Pharm. Bull. 28 (2005) 1117-1119. https://doi.org/10.1248/bpb.28.1117.

[52]

R.M. Centko, S. Ramón-García, T. Taylor, et al., Ramariolides A-D, antimycobacterial butenolides isolated from the mushroom Ramaria cystidiophora, J. Nat. Prod. 75 (2012) 2178-2182. https://doi.org/10.1021/np3006277.

[53]

C.H. Hwang, B.U. Jaki, L.L. Klein, et al., Chlorinated coumarins from the polypore mushroom, Fomitopsis officinalis, and their activity against Mycobacterium tuberculosis, J. Nat. Prod. 23 (2006) 1-7. https://doi.org/10.1021/np400497f.

[54]

N. Markova, V. Kussovskia, I. Drandarska, et al., Protective activity of Lentinan in experimental tuberculosis, Int. Immunopharmacol. 3 (2003)1557-1562. https://doi.org/10.1016/S1567-5769(03)00178-4.

[55]

P.S. Bisen, R.K. Baghel, B.S. Sanodiya, et al., Lentinus edodes: a macrofungus with phammacological activities, Curr. Med. Chem. 17 (2010)2419-2430. https://doi.org/10.2174/092986710791698495.

[56]

N. Lofgren, B.H.H. Luning, The isolation of nebularine and the determination of its structure, Acta Chem. Scand. 8 (1954) 670-680.

[57]

B.S. Yun, IK. Lee, Y. Cho, et al., New tricyclic sesquiterpenes from the fermentation broth of Stereum hirsutum, J. Nat. Prod. 65 (2002) 786-788. https://doi.org/10.1021/np010602b.

[58]

R. Sun, X. Zheng, X. Wang, et al., Two new benzofuran derivatives from the fungus Stereum sp. YMF1.1684, Phytochem. Lett. 4 (2011) 320-322. https://doi.org/10.1016/j.phytol.2011.06.003.

[59]

M. Isaka, U. Srisanoh, W. Choowong, et al., Sterostreins A-E, new terpenoids from cultures of the basidiomycete Stereum ostrea BCC 22955, Org. Lett. 13 (2011) 4886-4889. https://doi.org/10.1021/ol2019778.

[60]

O. Ogbole, P. Segun, T. Akinleye, et al., Antiprotozoal, antiviral and cytotoxic properties of the Nigerian mushroom, Hypoxylon fuscum pers. Fr. (Xylariaceae), Acta Chem. Scand. 56 (2018) 43-56. https://doi.org/10.23893/1307-2080.APS.05625.

[61]

B.A. Quadros Gomes, L.F.D. da Silva, A.R. Quadros Gomes, et al., N-acetyl cysteine and mushroom Agaricus sylvaticus supplementation decreased parasitaemia and pulmonary oxidative stress in a mice model of malaria, Malaria J. 14 (2015) 1-12. https://doi.org/10.1186/s12936-015-0717-0.

[62]

A.H.U. Cachóna, M.G. Angulob, R.B. Argáezb, et al., Antitubercular activity of the fungus Gliocladium sp. MR41 strain, Iran. J. Pharm. Res. 18 (2019)860-866. https://doi.org/10.22037/ijpr.2019.1100667.

[63]

J.V. Orsine, L. Marques Brito, R.C. Silva, Cytotoxicity of Agaricus sylvaticus in non-tumor cells (NIH/3T3) and tumor (OSCC-3)using tetrazolium (MTT) assay, Nutr. Hosp. 28 (2013) 1244-1254. https://doi.org/10.3305/nh.2013.28.4.6461.

[64]

S. Samchai, P. Seephonkai, A., Sangdee, et al., Antioxidant, cytotoxic and antimalarial activities from crude extracts of mushroom Phellinus linteus, J. Biol. Sci. 9 (2009) 778-783. https://doi.org/10.3923/jbs.2009.778.783.

[65]

O.M. Oluba, A.O. Olusola, B.S. Fagbohunka, et al., Antimalarial and hepatoprotective effects of crude ethanolic extract of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt. Fr) P. Karst (higher Basidiomycetes), in Plasmodium berghei infected mice, Int. J. Med. Mushrooms 14 (2012) 459-466.

[66]

W. Milliken, Malaria and antimalarial plants in Roraima, Brazil, Trop. Doct. 27 (1997) 20-25. https://doi.org/10.1177/00494755970270S108.

[67]

J.D. Phillipson, C.W. Wright, Antiprotozoal agents from plant sources, Planta Med. 57 (1991) 53-59. https://doi.org/10.1055/s-2006-960230.

[68]

K. Ma, J. Ren, J. Han, et al., Ganoboninketals A-C, antiplasmodial 3, 4-seco-27-norlanostane triterpenes from Ganoderma boninense Pat, J. Nat. Prod. 26(2014) 3-8. https://doi.org/10.1021/np5002863.

[69]

K. Ma, L. Li, L. Bao, et al., Six new 3, 4-seco-27-norlanostane triterpenes from the medicinal mushroom Ganoderma boninense and their antiplasmodial activity and agonistic activity to LXRβ, Tetrahedron 71 (2015)1808-1814. https://doi.org/10.1016/j.tet.2015.02.002.

[70]

M. Isaka, M. Sappan, W. Choowong, et al., Antimalarial lanostane triterpenoids from cultivated fruiting bodies of the Basidiomycete Ganoderma sp., J. Antibiot. 73 (2020) 702-710. https://doi.org/10.1038/s41429-020-0357-7.

[71]

W. Lakornwong, K. Kanokmedhakul, S. Kanokmedhakul, et al., Triterpene lactones from cultures of Ganoderma sp. KM01, J. Nat. Prod. 77 (2014)1545-1553. https://doi.org/10.1021/np400846k.

[72]

M. Isaka, A. Yangchum, S. Wongkanoun, et al., Marasmane and normarasumane sesquiterpenenoids from the edible mushroom Russula nigricans, Phytochem. Lett. 21 (2017) 174-178. https://doi.org/10.1016/j.phytol.2017.06.013.

[73]

W.M. Daniewski, M. Gumulka, K. Ptaszynska, et al., Marmasane lactones from Lactarius vellereus, Phytochemistry 31 (1992) 913-915.

[74]

M. Isaka, S. Palasarn, S. Sommaia, et al., Lanostane triterpenoids from the edible mushroom Astraeus asiaticus, Tetrahedron 73 (2017) 1561-1567. https://doi.org/10.1016/j.tet.2017.01.070.

[75]

M. Adams, M. Christen, I. Plitzko, et al., Antiplasmodial lanostanes from the Ganoderma lucidum mushroom, J. Nat. Prod. 73 (2010) 897-900. https://doi.org/10.1021/np100031c.

[76]

A.E. Wahba, A.K.A. El-Sayed, A.A. El-Falal, et al., New antimalarial lanostane triterpenes from a new isolate of Egyptian Ganoderma species, Med. Chem. Res. 28 (2019) 2246-2251. https://doi.org/10.1007/s00044-019-02450-1.

[77]

M. Isaka, P. Chinthanom, K. Srichomthong, et al., Lanostane triterpenoids from fruiting bodies of the bracket fungus Fomitopsis feei, Tetrahedron Lett. 58 (2017) 1758-1761. https://doi.org/10.1016/j.tetlet.2017.03.066.

[78]

C.T. Tokuyama, M. Nishxzawa, M. Shiro, et al., Malonate half-esters of homolanostanoid Ganoderma fungus from an Asian, Phytochemistry 29(1990) 923-928.

[79]

J. RoÈsecke, W.A. KoÈnig, Constituents of the fungi Daedalea quercina and Daedaleopsis confragosa var. tricolor, Phytochemistry 54 (2000) 757-762.

[80]

M.E. Duru, G.T. Çayan, Biologically active terpenoids from mushroom origin: a review, Rec. Nat. Prod. 9 (2015) 456-483.

[81]

C. Intaraudom, N. Boonyuen, S. Supothina, et al., Novel spiro-sesquiterpene from the mushroom Anthracophyllum sp. BCC18695, Phytochem. Lett. 6(2013) 345-349. https://doi.org/10.1016/j.phytol.2013.04.006.

[82]

S. Kanokmedhakul, R. Lekphroma, K. Kanokmedhakul, et al., Cytotoxic sesquiterpenes from luminescent mushroom Neonothopanus nambi, Tetrahedron 68 (2012) 8261-8266. https://doi.org/10.1016/j.tet.2012.07.057.

[83]

N. Bunbamrung, C. Intaraudom, A. Dramae, et al., Antimicrobial activity of illudalane and alliacane sesquiterpenes from the mushroom Gloeostereum incarnatum BCC41461, Phytochem. Lett. 20 (2017) 274-281.https://doi.org/ 10.1016/j.phytol.2017.05.017.

[84]

J. O'Brien, I. Wilson, T. Orton, et al., Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur. J. Biochem. 267 (2000) 5421-5426.https://doi.org/10.1046/j.1432-1327.2000.01606.x.

[85]

K. Sadorn, S. Saepua, N. Boonyuen, et al., Antimicrobial activity and cytotoxicity of polyketides isolated from the mushroom: Xerula sp. BCC56836, RSC Adv. 6 (2016) 94510-94523. https://doi.org/10.1039/c6ra21898a.

[86]

M. Isaka, S. Palasarn, M. Sappan, et al., Hirsutane sesquiterpenes from cultures of the Basidiomycete Marasmiellus sp. BCC 22389, Natur. Prod.Bioprosp. 6 (2016) 257-260. https://doi.org/10.1007/s13659-016-0105-7.

[87]

S.E. Helaly, C. Richter, B. Thongbai, et al., Lentinulactam, a hirsutane sesquiterpene with an unprecedented lactam modification, Tetrahedron Lett.57 (2016) 5911-5913. https://doi.org/10.1016/j.tetlet.2016.11.075.

[88]

J. Kornsakulkarn, C. Thongpanchang, R. Chainoy, et al., Bioactive metabolites from cultures of basidiomycete Favolaschia tonkinensis, J. Nat.Prod. 73 (2010) 759-762. https://doi.org/10.1021/np900777r.

[89]

H. Balba, . Review of strobilurin fungicide chemicals, J. Environ. Sci. Health B 42 (2007) 441-451. https://doi.org/10.1080/03601230701316465.

[90]

N. Tajuddeen, F.R. Van Heerden, Antiplasmodial natural products: an update, Malaria J. 18 (2019) 1-62. https://doi.org/10.1186/s12936-019-3026-1.

[91]

J. Kornsakulkarn, S. Palasarn, W. Choowong, et al., Antimalarial 9-methoxystrobilurins, oudemansins, and related polyketides from cultures of Basidiomycete Favolaschia species, J. Nat. Prod. 83 (2020) 905-917.https://doi.org/10.1021/acs.jnatprod.9b00647.

[92]

G. Ma, W. Yang, L. Zhao, et al., A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci. Human Wellness 7 (2018).https://doi.org/10.1016/j.fshw.2018.05.002.

Food Science and Human Wellness
Pages 942-958
Cite this article:
Moussa AY, Xu B. A narrative review on inhibitory effects of edible mushrooms against malaria and tuberculosis-the world's deadliest diseases. Food Science and Human Wellness, 2023, 12(4): 942-958. https://doi.org/10.1016/j.fshw.2022.10.017
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return