AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Insights on the molecular mechanism of neuroprotection exerted by edible bird's nest and its bioactive constituents

Weiyi ChuaChia Wei Phana,b,c( )Seng Joe Limd,eAbdul Salam Babjid,e
Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai Kuala Lumpur 59100, Malaysia
Mushroom Research Centre, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Neurodegenerative diseases are often associated with the accumulation of oxidative stress and neuroinflammation. Edible bird's nest (EBN) is a glycoprotein (sialylated mucin glycopeptides) found to be beneficial against neurodegenerative diseases. Antioxidative, anti-inflammatory, and anti-apoptotic properties of EBN in preserving neuronal cells were widely researched using in vitro and in vivo models. Functional effects of EBN are often linked to its great number of antioxidants and anti-inflammatory glycopeptides. Bioactive compounds in EBN, especially sialic acid, add value to neurotrophic potential of EBN and contribute to neuronal repair and protection. Various studies reporting the neuroprotective effects of EBN, their molecular mechanisms, and neuroactive composition were gathered in this review to provide better insights on the neuroprotective effects of EBN.

References

[1]

V.L. Feigin, E. Nichols, T. Alam, et al., Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016, Lancet Neurol. 18 (2019) 459-480. https://doi.org/10.1016/S1474-4422(18)30499-X

[2]
World Health Organization, Global action plan on the public health response to dementia 2017 - 2025.
[3]
United Nations Department of Economic and Social Affairs, Population Division, World Population Ageing 2019: Highlights, (2019).
[4]

R.M. Liu, Aging, cellular senescence, and Alzheimer's disease, Int. J. Mol. Sci. 23 (2020) 1989. https://doi.org/10.3390/ijms23041989.

[5]

V. Kluever, E.F. Fornasiero, Principles of brain aging: status and challenges of modeling human molecular changes in mice, Ageing Res. Rev. 72 (2021) 101465. https://doi.org/10.1016/j.arr.2021.101465.

[6]

S.V. Helena, R.A. Selva, Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4(+)T cells in neurodegenerative diseases, Front. Cell. Neurosci. 12 (2018) 114. https://doi.org/10.3389/fncel.2018.00114.

[7]

Y. Tang, W. Le, Differential roles of M1 and M2 microglia in neurodegenerative diseases, Mol. Neurobiol. 53 (2015) 1181-1194. https://doi.org/10.1007/s12035-014-9070-5.

[8]

D. Martirosyan, J. Singh, A new definition of functional food by FFC: what makes a new definition unique? Func. Foods Health Dis. 5 (2015) 209-223.

[9]

G. Li, T.H. Lee, G. Chan, K.W.K. Tsim, Editorial: edible bird's nest—chemical composition and potential health efficacy and risks, Front. Pharmacol. 12 (2022) 819461. https://doi.org/10.3389/fphar.2021.819461.

[10]

K.C. Chok, M.G. Ng, K.Y. Ng, et al., Edible bird's nest: recent updates and industry insights based on laboratory findings, Front. Pharmacol. 12 (2021) 746656. https://doi.org/10.3389/fphar.2021.746656.

[11]

S.M. Chye, S.K. Tai, R.Y. Koh, et al., A mini review on medicinal effects of edible bird's nest, Lett. Health Biol. Sci. 2 (2017) 1-3. https://doi.org/10.15436/2475-6245.17.016.

[12]

S.S. Teh, Z.F. Ma, Bioactive components and pharmacological properties of edible bird's nest, Int. Proc. Chem. Biol. Environ. Eng. 103 (2018) 29-34. https://doi.org/10.7763/IPCBEE.2018.V103.7.

[13]

H.S.M. Noor, A. Babji, S.J. Lim, Nutritional composition of different grades of edible bird's nest and its enzymatic hydrolysis, The 2017 UKM FST Postgraduate Colloquium: Proceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloquium, 1940 (2018) 020088.

[14]

A. Ling, L.S. Chang, A.S. Babji, et al., Review of sialic acid's biochemistry, sources, extraction and functions with special reference to edible bird's nest, Food Chem. 367 (2022) 130755. https://doi.org/10.1016/j.foodchem.2021.130755.

[15]

H. Goshtasbi, P.S. Pakchin, A. Movafeghi, et al., Impacts of oxidants and antioxidants on the emergence and progression of Alzheimer's disease, Neurochem. Int. 153 (2022) 105268. https://doi.org/10.1016/j.neuint.2021.105268.

[16]

Z. Liu, T. Zhou, A.C. Ziegler, et al., Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications, Oxid. Med. Cell. Longev. 2017 (2017) 2525967. https://doi.org/10.1155/2017/2525967.

[17]

A. Melo, L. Monteiro, R.M.F. Lima, et al., Oxidat ive stress in neurodegenerative diseases: mechanisms and therapeutic perspect ives, Oxid. Med. Cel l. Longev. 2011 (2011) 467180. https://doi.org/10.1155/2011/467180.

[18]

G.H. Kim, J.E. Kim, S.J. Rhie, et al., The role of oxidative stress in neurodegenerative diseases, Exp. Neurobiol. 24 (2015) 325-340. https://doi.org/10.5607/en.2015.24.4.325.

[19]

R. Stefanatos, A. Sanz, The role of mitochondrial ROS in the aging brain, FEBS Letters. 592 (2018) 743-758. https://doi.org/10.1002/1873-3468.12902.

[20]

J. Blesa, I. Trigo-Damas, A. Quiroga-Varela, et al., Oxidative stress and Parkinson's disease, Front. Neuroanat. 9 (2015) 91. https://doi.org/10.3389/fnana.2015.00091.

[21]

R. Sultana, M. Perluigi, D.A. Butterfield, Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain, Free Rad. Biol. Med. 62 (2013) 157-169. https://doi.org/10.1016/j.freeradbiomed.2012.09.027.

[22]

A. Ayala, M.F. Muñoz, S. Argüelles, Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal, Oxid. Med. Cell. Longev. 2014 (2014) 360438. https://doi.org/10.1155/2014/360438.

[23]

M. Shichiri, The role of lipid peroxidation in neurological disorders, J. Clin. Biochem. Nutr. 54 (2014) 151-160. https://doi.org/10.3164/jcbn.14-10.

[24]

Z. Hou, M.U. Imam, M. Ismail, et al., Lactoferrin and ovotransferrin contribute toward antioxidative effects of edible bird's nest against hydrogen peroxide-induced oxidative stress in human SH-SY5Y cells, Biosci. Biotechnol. Biochem. 79 (2015) 1570-1578. https://doi.org/10.1080/091684 51.2015.1050989.

[25]

F. Blandini, O. Brustle, N. Deglon, et al., Experimental models for neurodegenerative diseases, Report of the Neurodegenerative Disorders Research Action Group (2014) 1-44.

[26]

S. Franceschelli, P. Lanuti, A. Ferrone, et al., Modulation of apoptotic cell death and neuroprotective effects of glutathione—L-dopa codrug against H2O2-induced cellular toxicity, Antioxidants 8 (2019) 319. https://doi.org/10.3390/antiox8080319.

[27]

M.Y. Yew, R.Y. Koh, S.M. Chye, et al., Edible bird's nest improves motor behavior and protects dopaminergic neuron against oxidative and nitrosative stress in Parkinson's disease mouse model, J. Funct. Foods 48 (2018) 576-585. https://doi.org/10.1016/j.jff.2018.07.058.

[28]

J.H.T. Power, P.C. Blumbergs, Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson's disease and dementia with Lewy bodies, Acta Neuropathol. 117 (2009) 63-73. https://doi.org/10.1007/s00401-008-0438-3.

[29]

Z. Hou, M.U. Imam, M. Ismail, et al., Effects of edible bird's nest on hippocampal and cortical neurodegeneration in ovariectomized rats, Food Funct. 6 (2015) 1701-1711. https://doi.org/10.1039/c5fo00226e.

[30]

S. Zárate, T. Stevnsner, R. Gredilla, Role of estrogen and other sex hormones in brain aging. neuroprotection and DNA repair, Front. Aging Neurosci. 9 (2017) 430. https://doi.org/10.3389/fnagi.2017.00430.

[31]

Y.H. Huang, Q.H. Zhang, Genistein reduced the neural apoptosis in the brain of ovariectomised rats by modulating mitochondrial oxidative stress, Brit. J Nutr. 104 (2010) 1297-1303. https://doi.org/10.1017/S0007114510002291.

[32]
C.C.C. Mendoza, C.A.J. Zamarripa, Menopause induces oxidative stress in: J. A. Morales-González (Eds.), Oxidative Stress and Chronic Degenerative Diseases - A Role for Antioxidants, 2013.
[33]

R.A. Ismaeil, C.K. Hui, K.A. Affandi, et al., Neuroprotective effect of edible bird's nest in chronic cerebral hypoperfusion induced neurodegeneration in rats, Neuroimmunol. Neuroinflamm. 8 (2021) 63. http://dx.doi.org/10.20517/2347-8659.2020.63.

[34]
M. Chandra, M. Panchatcharam, S. Miriyala, Biomarkers in ROS and role of isoprostanes in oxidative stress in: A. Rizwan (Eds.), Free Radicals and Diseases, IntechOpen, 2016.
[35]

K. Nowotny, T. Jung, A. Höhn, et al., Advanced glycation end products and oxidative stress in type 2 diabetes mellitus, Biomolecules 5 (2015) 194-222. https://doi.org/10.3390/biom5010194.

[36]

Y. Xing, X. Zhang, X. Song, et al., Injury of cortical neurons is caused by the advanced glycation end products-mediated pathway, Neural Regen. Res. 8 (2013) 909-915. https://doi.org/10.3969/j.issn.1673-5374.2013.10.005.

[37]

Z. Hou, P. He, M.U. Imam, et al., Edible bird's nest prevents menopause-related memory and cognitive decline in rats via increased hippocampal sirtuin-1 expression, Oxidative Med. Cell. Longev. 2017 (2017) 7205082. https://doi.org/10.1155/2017/7205082.

[38]

Y. Xie, H. Zeng, Z. Huang, et al., Effect of maternal administration of edible bird ' s nest on the learning and memory abilities of suckling offspring in mice, Neural Plastic. 2018 (2018) 7697261. https://doi.org/10.1155/2018/7697261.

[39]

B. Wang, Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition, Adv. Nutr. 3 (2012) 465S-472S. https://doi.org/10.3945/an.112.001875.

[40]

I. Yang, S.J. Han, G. Kaur, et al., The role of microglia in central nervous system immunity and glioma immunology, J. Clin. Neurosci. 17 (2010) 6-10. https://doi.org/10.1016/j.jocn.2009.05.006.

[41]

L. Carniglia, D. Ramírez, D. Durand, et al., Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases, Mediat. Inflamm. 2017 (2017) 5048616. https://doi.org/10.1155/2017/5048616.

[42]

C.S. Subhramanyam, C. Wang, Q. Hu, et al., Microglia-mediated neuroinflammation in neurodegenerative diseases, Semin. Cell Dev. Biol. 94 (2019) 112-120. https://doi.org/10.1016/j.semcdb.2019.05.004.

[43]

T. Chitnis, H.L. Weiner, CNS inflammation and neurodegeneration, J. Clin. Neurosci. 127 (2017) 3577-3587. https://doi.org/10.1172/JCI90609.

[44]

A. Roy, A. Jana, K. Yatish, et al., Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: implications for neurodegenerative diseases, Free Rad. Biol. Med. 45 (2008) 686-699. https://doi.org/10.1016/j.freeradbiomed.2008.05.026.

[45]

S. Careena, D. Sani, S.N. Tan, et al., Effect of edible bird's nest extract on lipopolysaccharide-induced impairment of learning and memory in Wistar rats, Evid. Based Complement. Alternat. Med. 2018 (2018) 9318789. https://doi.org/10.1155/2018/9318789.

[46]

C.R.A. Batista, G.F. Gomes, E. Candelario-Jalil, et al., Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration, Int. J. Mol. Sci. 20 (2019) 2293. https://doi.org/10.3390/ijms20092293.

[47]

Z. Yida, M.U. Imam, M. Ismail, et al., Edible bird's nest attenuates high fat diet-induced oxidative stress and inflammation via regulation of hepatic antioxidant and inflammatory genes, BMC Complement. Altern. Med. 15 (2015) 310. https://doi.org/10.1186/s12906-015-0843-9.

[48]

A. Haghani, P. Mehrbod, N. Safi, et al., In vitro and in vivo mechanism of immunomodulatory and antiviral activity of Edible bird's nest (EBN) against influenza A virus (IAV) infection, J. Ethnopharmacol. 185 (2016) 327-340. https://doi.org/10.1016/j.jep.2016.03.020.

[49]

J.-M. Zhang, J. An, Cytokines, inflammation, and pain, Int. Anesthesiol. Clin. 45 (2007) 27-37. https://doi.org/10.1097/AIA.0b013e318034194e.

[50]

K. Byun, Y. Yoo, M. Son, et al., Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases, Pharmacol. Ther. 177 (2017) 44-55. https://doi.org/10.1016/j.pharmthera.2017.02.030.

[51]

A. Villa, E. Vegeto, A. Poletti, et al., Estrogens, neuroinflammation, and neurodegeneration, Endocr. Rev. 37 (2016) 372-402. https://doi.org/10.1210/er.2016-1007.

[52]

M. Liu, L. Qin, L. Wang, et al., α-synuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulum-Golgi compartment, Mol. Med. Rep. 18 (2018) 322-332. https://doi.org/10.3892/mmr.2018.9002.

[53]

H. Chi, H.Y. Chang, T.K. Sang, Neuronal cell death mechanisms in major neurodegenerative diseases, Int. J. Mol. Sci. 19 (2018) 3082. https://doi.org/10.3390/ijms19103082.

[54]

D.E. Bredesen, Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence, Mol. Neurodegener. 4 (2009) 27. https://doi.org/10.1186/1750-1326-4-27.

[55]

S. Ghavami, S. Shojaei, B. Yeganeh, et al., Autophagy and apoptosis dysfunction in neurodegenerative disorders, Prog. Neurobiol. 112 (2014) 24-49. https://doi.org/10.1016/j.pneurobio.2013.10.004.

[56]

M.Y. Yew, R.Y. Koh, S.M. Chye, et al., Edible bird's nest ameliorates oxidative stress-induced apoptosis in SH-SY5Y human neuroblastoma cells, BMC Complement. Altern. Med. 14 (2014) 391. https://doi.org/10.1186/1472-6882-14-391.

[57]

G.V. Chaitanya, A.J. Steven, P.P. Babu, PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration, Cell Commun. Signal. 8 (2010) 31. https://doi.org/10.1186/1478-811X-8-31.

[58]

H.L. Ko, E.C. Ren, Functional aspects of PARP1 in DNA repair and transcription, Biomolecules 2 (2012) 524-548. https://doi.org/10.3390/biom2040524.

[59]

G. Verdile, S.E. Gandy, R.N. Martins, The role of presenilin and its interacting proteins in the biogenesis of Alzheimer's beta amyloid, Neurochem. Res. 32 (2007) 609-623. https://doi.org/10.1007/s11064-006-9131-x.

[60]

Y.J. Chang, N.H. Linh, Y.H. Shih, et al., Alzheimer's amyloid-β sequesters caspase-3 in vitro via its C-terminal tail, ACS Chemical Neuroscience. 7 (2016) 1097-1106. https://doi.org/10.1021/acschemneuro.6b00049.

[61]

Y. Tsujimoto, T. Nakagawa, S. Shimizu, Mitochondrial membrane permeability transition and cell death, Biochim. Biophys. Acta Bioenerg. 1757 (2006) 1297-1300. https://doi.org/10.1016/j.bbabio.2006.03.017.

[62]

I.H. Witte, Sven, Assessment of endoplasmic reticulum stress and the unfolded protein response in endothelial cells, Meth. Enzymol. 489 (2011) 127-146. https://doi.org/10.1016/B978-0-12-385116-1.00008-X.

[63]

C.V. Vorhees, M.T. Williams, Assessing spatial learning and memory in rodents, ILAR J. 55 (2014) 310-332. https://doi.org/10.1093/ilar/ilu013.

[64]

K.S. Anand, V. Dhikav, Hippocampus in health and disease: an overview, Ann. Indian Acad. Neurol. 15 (2012) 239-246. https://doi.org/10.4103/0972-2327.104323.

[65]

D.M.C. Torres, F.P. Cardenas, Synaptic plasticity in Alzheimer's disease and healthy aging, Rev. Neurosci. 31 (2020) 245-268. https://doi.org/10.1515/revneuro-2019-0058.

[66]

S. Weinmann, S. Roll, C. Schwarzbach, et al., Effects of Ginkgo biloba in dementia: systematic review and meta-analysis, BMC Geriatr. 10 (2010) 14. https://doi.org/10.1186/1471-2318-10-14.

[67]

O. Mahaq, M.A. P Rameli, M. Jaoi Edward, et al., The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice, Brain Behav. 10 (2020) e01817. https://doi.org/10.1002/brb3.1817.

[68]

S. Michán, Y. Li, M.M.H. Chou, et al., SIRT1 is essential for normal cognitive function and synaptic plasticity, J. Neurosci. 30 (2010) 9695-9707. https://doi.org/10.1523/JNEUROSCI.0027-10.2010.

[69]

T.K.S. Ng, C.S.H. Ho, W.W.S. Tam, et al., Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD): a systematic review and meta-analysis, Int. J. Mol. Sci. 20 (2019) 257. https://doi.org/10.3390/ijms20020257.

[70]

S.V. Maurer, C.L. Williams, The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells, Front. Immunol. 8 (2017) 1489. https://doi.org/10.3389/fimmu.2017.01489.

[71]

T.N. Luong, H.J. Carlisle, A. Southwell, et al., Assessment of motor balance and coordination in mice using the balance beam, J. Vis. Exp. 49 (2011) 2376. https://doi.org/10.3791/2376.

[72]

M.L. Seibenhener, M.C. Wooten, Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice, J. Vis. Exp. 96 (2015) e52434. https://doi.org/10.3791/52434.

[73]

T.N. Taylor, J.G. Greene, G.W. Miller, Behavioral phenotyping of mouse models of Parkinson's disease, Behav. Brain Res. 211 (2010) 1-10. https://doi.org/10.1016/j.bbr.2010.03.004.

[74]

M.Y. Yew, R.Y. Koh, S.M. Chye, et al., Neurotrophic properties and the de novo peptide sequencing of edible bird's nest extracts, Food Biosci. 32 (2019) 100466. https://doi.org/10.1016/j.fbio.2019.100466.

[75]

S.E. Marsh, M. Blurton-Jones, Neural stem cell therapy for neurodegenerative disorders: the role of neurotrophic support, Neurochem. Int. 106 (2017) 94-100. https://doi.org/10.1016/j.neuint.2017.02.006.

[76]

D.A. Steindler, B.A. Reynolds, Perspective: neuroregenerative nutrition, Adv. Nutr. 8 (2017) 546-557. https://doi.org/10.3945/an.117.015388.

[77]
OECD, OECD guideline for testing of chemicals: acute oral toxicity - acute toxic class method, (2001).
[78]

P.E. Kew, S.F. Wong, P.K. Lim, et al., Structural analysis of raw and commercial farm edible bird nests, Trop. Biomed. 31 (2014) 63-76.

[79]

D.L. Goh, K.Y. Chua, F.T. Chew, et al., Immunochemical characterization of edible bird's nest allergens, J. Allergy Clin. Immunol. 107 (2001) 1082-1087. https://doi.org/10.1067/mai.2001.114342.

[80]
Standard and Industrial Research Institute of Malaysia (SIRIM), Edible bird nest (EBN) specification (MS 2334: 2011), Selangor, Malaysia, 2011.
[81]

A.A.M. Ali, H.S.M. Noor, P.K. Chong, et al., Comparison of amino acids profile and antioxidant activities between edible bird nest and chicken egg, Malays. Appl. Biol. 48 (2019) 63-69.

[82]

S.R. Ng, H.S.M. Noor, R. Ramachandran, et al., Recovery of glycopeptides by enzymatic hydrolysis of edible bird's nest: the physicochemical characteristics and protein profile, J. Food Meas. Charact. 14 (2020) 2635-2645. https://doi.org/10.1007/s11694-020-00510-4.

[83]

M.Z.N. Huda, A.B.Z. Zuki, K. Azhar, et al., Proximate, elemental and fatty acid analysis of pre-processed edible birds' nest (Aerodramus fuciphagus): a comparison between regions and type of nest, J. Food Technol. 6 (2008) 39-44.

[84]

N.A. Daud, S.M. Yusop, A.S. Babji, et al., Edible bird ' s nest: physicochemical properties, production, and application of bioactive extracts and glycopeptides, Food Rev. Int. 37 (2019) 1-20. https://doi.org/10.1080/87559129.2019.1696359.

[85]

W. Saengkrajang, N. Matan, N. Matan, Nutritional composition of the farmed edible bird's nest (Collocalia fuciphaga) in Thailand, J. Food Compost. Anal. 31 (2013) 41-45.

[86]

Z. Hamzah, N.H. Ibrahim, S.J. Lim, et al., Nutritional properties of edible bird nest, J. Asian Sci. Res. 3 (2013) 600-607.

[87]

M. Norhayati, O. Azman, W.N. Wan Mohamud, Preliminary study of the nutritional content of Malaysian edible bird's nest, Malays. J. Nutr. 16 (2010) 389-396.

[88]

M.C. Quek, N.L. Chin, Y.A. Yusof, et al., Characterization of edible bird's nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities, Food Res. Int. 109 (2018) 35-43. https://doi.org/10.1016/j.foodres.2018.03.078.

[89]

M.F. Marcone, Characterization of the edible bird's nest the "Caviar of the East", Food Res. Int. 38 (2005) 1125-1134. https://doi.org/10.1016/j.foodres.2005.02.008.

[90]

S.N. Tan, D. Sani, C.W. Lim, et al., Proximate analysis and safety profile of farmed edible bird's nest in Malaysia and its effect on cancer cells, Evid. Based Complement. Alternat. Med. 2020 (2020) 8068797. https://doi.org/10.1155/2020/8068797.

[91]

E.K. Seow, B. Ibrahim, S.A. Muhammad, et al., Differentiation between house and cave edible bird's nests by chemometric analysis of amino acid composition data, LWT-Food Sci. Technol. 65 (2016) 428-435. https://doi.org/10.1016/j.lwt.2015.08.047.

[92]

N.M. Halimi, Z.M. Kasim, A.S. Babji, Nutritional composition and solubility of edible bird nest (Aerodramus fuchiphagus), AIP Conf. Proc. 1614 (2014) 476-481. https://doi.org/10.1063/1.4895243.

[93]

A.M. Amin, X.X. Oon, N. Sarbon, Optimization of enzymatic hydrolysis conditions on the degree of hydrolysis of edible bird's nest using Alcalase® and nutritional composition of the hydrolysate, Food Res. 3 (2019) 570-580.

[94]

D.A. Zulkifli, R. Mansor, M.M.M. Ajat, et al., Differentiation of Malaysian farmed and commercialised edible bird's nests through nutritional composition analysis, Pertanika J. Trop. Agric. Sci. 42 (2019) 871-881. http://psasir.upm.edu.my/id/eprint/71159.

[95]

M. Ghassem, K. Arihara, S. Mohammadi, et al., Identification of two novel antioxidant peptides from edible bird's nest (Aerodramus fuciphagus) protein hydrolysate, Food Funct. 8 (2017) 2046–2052. https://doi.org/10.1039/c6fo01615d.

[96]

N.A. Daud, S.R. Sarbini, A.S. Babji, et al., Characterization of edible swiftlet's nest as a prebiotic ingredient using a simulated colon model, Ann. Microbiol. 69 (2019) 1235-1246. https://doi.org/10.1007/s13213-019-01507-1.

[97]

H.L. Ting, H.L. Chia, A.A. Nurul, et al., Characterization of polar and non-polar compounds of house edible bird's nest (EBN) from Johor, Malaysia, Chem. Biodivers. 17 (2020) 419. https://doi.org/10.1002/cbdv.201900419.

[98]

M. Saeidi, R. Shakeri, A. Marjani, et al., Alzheimer's disease and paraoxonase 1 (PON1) gene polymorphisms, Open Biochem. J. 11 (2017) 47-55.

[99]

F. Ma, D. Liu, Extraction and determination of hormones in the edible bird's nest, Asian J. Chem. 24 (2012) 117-120.

[100]
L. Yang, C. Cai, J. Lin, et al., Simultaneous detection of estrogenic and progestogenic hormones in edible bird's nest by ultra-performance liquid chromatography tandem mass spectrometry, PerkinElmer, Inc. (2016) 1-4.
[101]

R.L. Schnaar, R. Gerardy-Schahn, H. Hildebrandt, Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration, Physiol. Rev. 94 (2014) 461-518. https://doi.org/10.1152/physrev.00033.2013.

[102]

C.H. Tung, J.Q. Pan, H.M. Chang, et al., Authentic determination of bird's nests by saccharides profile, J. Food Drug Anal. 16 (2008) 86-91. https://doi.org/10.38212/2224-6614.2339.

[103]

J.W.A. Ling, L.S. Chang, A.S. Babji, et al., Recovery of value-added glycopeptides from edible bird's nest (EBN) co-products: enzymatic hydrolysis, physicochemical characteristics and bioactivity, J. Sci. Food Agric. 100 (2020) 4714-4722. https://doi.org/10.1002/jsfa.10530.

[104]

H.K. Kong, K.H. Wong, S.C.L. Lo, Identification of peptides released from hot water insoluble fraction of edible bird's nest under simulated gastro-intestinal conditions, Food Res. Int. 85 (2016) 19-25. https://doi.org/10.1016/j.foodres.2016.04.002.

[105]

O. Gonzalez-Perez, A. Quiñones-Hinojosa, Dose-dependent effect of EGF on migration and differentiation of adult subventricular zone astrocytes, Glia 58 (2010) 975-983. https://doi.org/10.1002/glia.20979.

[106]

S.N. Zukefli, L.S. Chua, Z. Rahmat, Protein extraction and identification by gel electrophoresis and mass spectrometry from edible bird's nest samples, Food Anal. Methods 10 (2017) 387-398.

[107]

M. Ismail, A. Alsalahi, M.A. Aljaberi, et al., Efficacy of edible bird's nest on cognitive functions in experimental animal models: a systematic review, Nutrients 13 (2021) 1028. https://doi.org/10.3390/nu13031028.

[108]

S. Marni, M. Marzura, A. Norzela, Preliminary study on free sialic acid content of edible bird nest from Johor and Kelantan, Malays. J. Vet. Res. 5 (2014) 9-14.

[109]

Z.C.F. Wong, G.K.L. Chan, K.Q.Y. Wu, et al., Complete digestion of edible bird's nest releases free N-acetylneuraminic acid and small peptides: an efficient method to improve functional properties, Food Funct. 9 (2018) 5139-5149. https://doi.org/10.1039/c8fo00991k.

[110]

Y.Q. Yu, L. Xue, H. Wang, et al., Determination of edible bird's nest and its products by gas chromatography, J. Chromatogr. Sci. 38 (2000) 27-32. https://doi.org/10.1093/chromsci/38.1.27.

Food Science and Human Wellness
Pages 1008-1019
Cite this article:
Chu W, Phan CW, Lim SJ, et al. Insights on the molecular mechanism of neuroprotection exerted by edible bird's nest and its bioactive constituents. Food Science and Human Wellness, 2023, 12(4): 1008-1019. https://doi.org/10.1016/j.fshw.2022.10.021

651

Views

60

Downloads

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 07 February 2022
Revised: 10 March 2022
Accepted: 22 May 2022
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return