AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Flowers: precious food and medicine resources

Xuqiang LiuaSenye WangaLili CuiaHuihui ZhouaYuhang LiuaLijun MengbSitan ChencXuefeng Xia,d( )Yan Zhange( )Wenyi Kanga,f( )
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Functional Food Engineering Technology Research Center, Kaifeng 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
College of Physical Education, Henan University, Kaifeng 475004, China
Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
Shenzhen Research Institute of Henan University, Shenzhen 518000, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Flower plants are popular all over the world and important sources of ornamental plants, bioactive molecules and nutrients. Flowers have a wide range of biological activities and beneficial pharmacological effects. Flowers and their active ingredients are becoming more and more popular in the preparation of food, drugs and industrial products. This paper summarizes the active ingredients, pharmacological activities and applications in the pharmaceutical and food industries of flower plants in recent years. In addition, the possible molecular mechanism of pharmacological effects of flower plants were also discussed. 302 active constituents from 55 species of flower plants were summarized, including flavonoids (115), terpenoids (90), phenylpropanoids (20), alkaloids (13), organic acids (27) and others (37). The pharmacological effects of flower plants are very extensive, mainly including antioxidant, anti-inflammatory, anti-tumor, anti-virus, and hypoglycemic. The mechanisms of anti-inflammatory, anti-tumor and hypoglycemic activities present the characteristics of multi-way and multi-target. Because of its rich nutrients, bioactive ingredients and plant essential oils, and its wide sources, flower plants are widely used in food, beverage, cosmetics and drug research. Flower plants also play an important role in pharmaceutical industry, food industry and other fields.

References

[1]

A. Noman, M. Aqeel, J. Deng, et al., Biotechnological advancements for improving floral attributes in ornamental plants, Front. Plant Sci. 8 (2017) 1-15. https://doi.org/10.3389/fpls.2017.00530.

[2]

M. Wu, Q. Luo, R. Nie, et al., Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota, Crit. Rev. Food Sci. Nutr. 61 (2021) 2175-2193. https://doi.org/10.1080/10408398.2020.1773390.

[3]

G. Janarny, K.D.P.P. Gunathilake, K.K.D.S. Ranaweera, Nutraceutical potential of dietary phytochemicals in edible flowers-a review, J. Food Biochem. 45 (2021) 1-20. https://doi.org/10.1111/jfbc.13642.

[4]

M.R. Loizzo, A. Pugliese, M. Bonesi, et al., Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties, J. Agric. Food Chem. 64 (2016) 2467-2474. https://doi.org/10.1021/acs.jafc.5b03092.

[5]

T.C.S.P. Pires, L. Barros, C. Santos-Buelga, et al., Edible flowers: emerging components in the diet, Trends Food Sci. Technol. 93 (2019) 244-258. https://doi.org/10.1016/j.tifs.2019.09.020.

[6]

J.A. Takahashi, F.A.G.G. Rezende, M.A.F. Moura, et al., Edible flowers: bioactive profile and its potential to be used in food development, Food Res. Int. 129 (2020) 108868-108882. https://doi.org/10.1016/j.foodres.2019.108868.

[7]

N. Li, X. Yang, Y.L. Sun, et al., Flavones, total polyphenols and in vitro antioxidant activity in twenty kinds of herbal teas, Food Res. Development 42 (2021) 34-39. https://doi.org/10.12161/j.issn.1005-6521.2021.18.006.

[8]

W.D.X. Wang, Research progress on health effects of scented tea, China Tea Process. 54 (2022) 213-218. https://doi.org/10.15905/j.cnki.33-1157/ts.2022.01.005.

[9]

D. Chen, G. Chen, Y. Sun, et al., Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: a review, Food Res. Int. 137 (2020) 109584-109605. https://doi.org/10.1016/j.foodres.2020.109584.

[10]

Q. Chen, B. Xu, W. Huang, et al., Edible flowers as functional raw materials: a review on anti-aging properties, Trends Food Sci. Technol. 106 (2020) 30-47. https://doi.org/10.1016/j.tifs.2020.09.023.

[11]

L. Fernandes, S. Casal, J.A. Pereira, et al., Edible flowers: a review of the nutritional, antioxidant, antimicrobial properties and effects on human health, J. Food Compos. Anal. 60 (2017) 38-50. https://doi.org/10.1016/j.jfca.2017.03.017.

[12]

B. Lu, M. Li, R. Yin, Phytochemical content, health benefits, and toxicology of common edible flowers: a review (2000-2015), Crit. Rev. Food Sci. Nutr. 56 (2016) S130-S148. https://doi.org/10.1080/10408398.2015.1078276.

[13]

G.P. Łysiak, Ornamental flowers grown in human surroundings as a source of anthocyanins with high anti-inflammatory properties, Foods 11 (2022) 948-962. https://doi.org/10.3390/foods11070948.

[14]

J. Zheng, X. Yu, M. Maninder, et al., Total phenolics and antioxidants profiles of commonly consumed edible flowers in China, Int. J. Food Prop. 21 (2018) 1524-1540. https://doi.org/10.1080/10942912.2018.1494195.

[15]

J.B. Sharmeen, F.M. Mahomoodally, G. Zengin, et al., Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals, Molecules 26 (2021) 666-690. https://doi.org/10.3390/molecules26030666.

[16]

M. Mileva, Y. Ilieva, G. Jovtchev, et al., Rose flowers-a delicate perfume or a natural healer? Biomolecules 11 (2021) 1-32. https://doi.org/10.3390/biom11010127.

[17]

M.C. Dias, D.C.G.A. Pinto, A.M.S. Silva, Plant flavonoids: chemical characteristics and biological activity, Molecules (2021) 5377-5393. https://doi.org/10.3390/molecules26175377.

[18]

K. Wen, X. Fang, J. Yang, et al., Recent research on flavonoids and their biomedical applications, Curr. Med. Chem. 28 (2020) 1042-1066. https://dx.doi.org/10.2174/0929867327666200713184138.

[19]

B.T.T. Luyen, B.H. Tai, N.P. Thao, et al., The anti-osteoporosis and antioxidant activities of chemical constituents from Chrysanthemum indicum flowers, Phyther. Res. 29 (2015) 540-548. https://doi.org/10.1002/ptr.5281.

[20]

M. Ilhan, Z. Ali, I.A. Khan, et al., Promising activity of Anthemis austriaca Jacq. on the endometriosis rat model and isolation of its active constituents, Saudi Pharm. J. 27(6) (2019) 889-899. https://doi.org/10.1016/j.jsps.2019.06.002.

[21]

H.P. Devkota, K. Tsushiro, T. Watanabe, Bioactive phenolic compounds from the flowers of Farfugium japonicum (L.) Kitam. var. giganteum (Siebold et Zucc.) Kitam. (Asteraceae), Nat. Prod. Res. 36(15) (2021) 4036-4039. https://doi.org/10.1080/14786419.2021.1903004.

[22]

J. Chen, J. Teng, L. Ma, et al., Flavonoids isolated from the flowers of Limonium bicolor and their in vitro antitumor evaluation, Pharmacogn. Mag. 13(50) (2017) 222-225. https://doi.org/10.4103/0973-1296.204566.

[23]

P.K. Sonar, R. Singh, S. Khan, et al., Isolation, characterization and activity of the flowers of Rhododendron arboreum (Ericaceae), E-Journal Chem. 9 (2012) 631-636. https://doi.org/10.1155/2012/872147.

[24]

A. Marchelak, A. Owczarek, M. Rutkowska, et al., New insights into antioxidant activity of Prunus spinosa flowers: extracts, model polyphenols and their phenolic metabolites in plasma towards multiple in vivo-relevant oxidants, Phytochem. Lett. 30 (2019) 288-295. https://doi.org/10.1016/j.phytol.2019.02.011.

[25]

W. Liu, L. Chen, Y. Huang, et al., Antioxidation and active constituents analysis of flower residue of Rosa damascena, Chinese Herb. Med. 12 (2020) 336-341. https://doi.org/10.1016/j.chmed.2020.05.005.

[26]

A.E. Karadağ, B. Demirci, A. Çaşkurlu, et al., In vitro antibacterial, antioxidant, anti-inflammatory and analgesic evaluation of Rosmarinus officinalis L. flower extract fractions, South African J. Bot. 125 (2019) 214-220. https://doi.org/10.1016/j.sajb.2019.07.039.

[27]

F. Ma, Q. Cui, G. Bai, Combining UPLC/Q-TOF-MS/MS with biological evaluation for NF-κB inhibitors in uyghur medicine Althaea rosea flowers, Front. Plant Sci. 9 (2019) 1-9. https://doi.org/10.3389/fpls.2018.01975.

[28]

Z. Tai, L. Cai, L. Dai, et al., Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia, Food Chem. 126 (2011) 1648-1654. https://doi.org/10.1016/j.foodchem.2010.12.048.

[29]

W. Li, Y. Zhang, S. Shi, et al., Spectrum-effect relationship of antioxidant and tyrosinase activity with Malus pumila flowers by UPLC-MS/MS and component knock-out method, Food Chem. Toxicol. 133 (2019) 110754. https://doi.org/10.1016/j.fct.2019.110754.

[30]

M. Zhuang, H. Qiu, P. Li, et al., Islet protection and amelioration of type 2 diabetes mellitus by treatment with quercetin from the flowers of Edgeworthia gardneri, Drug Des. Devel. Ther. 12 (2018) 955-966. https://doi.org/10.2147/DDDT.S153898.

[31]

A. Adhikari-Devkota, S.M.I. Elbashir, T. Watanabe, et al., Chemical constituents from the flowers of Satsuma mandarin and their free radical scavenging and α-glucosidase inhibitory activities, Nat. Prod. Res. 33 (2019) 1670-1673. https://doi.org/10.1080/14786419.2018.1425856.

[32]

D. Tian, Y. Yang, M. Yu, et al., Anti-inflammatory chemical constituents of: Flos Chrysanthemi Indici determined by UPLC-MS/MS integrated with network pharmacology, Food Funct. 11 (2020) 6340-6351. https://doi.org/10.1039/D0FO01000F.

[33]

H. Tran Trung, H. Truong Thi Huynh, L. Nguyen Thi Thuy, et al., Growthinhibiting, bactericidal, antibiofilm, and urease inhibitory activities of Hibiscus rosa sinensis L. flower constituents toward antibiotic sensitive-and resistant-strains of helicobacter pylori, ACS Omega. 5 (2020) 20080-20089. https://doi.org/10.1021/acsomega.0c01640.

[34]

T. Promchai, T. Thaima, R. Rattanajak, et al., (R)-3-(8'-Hydroxyfarnesyl)-indole and other chemical constituents from the flowers of Anomianthus dulcis and their antimalarial and cytotoxic activities, Nat. Prod. Res. 35 (2021) 2476-2481. https://doi.org/10.1080/14786419.2019.1679139.

[35]

L. Ge, J. Li, H. Wan, et al., NMR data for novel flavonoids from Lonicera japonica flower buds, Data Br. 21 (2018) 2192-2207. https://doi.org/10.1016/j.dib.2018.11.021.

[36]

P. Shu, Y. Li, Y. Luo, et al., Isolation, characterization and antioxidant, tyrosinase inhibitory activities of constituents from the flowers of Cercis glabra 'spring-1, ' Rec. Nat. Prod. 15 (2021) 254-260. https://doi.org/10.25135/rnp.214.20.10.1851.

[37]

F. Zhao, Q. Zhang, Y. Yan, et al., Antioxidant constituents of Chrysanthemum 'jinsidaju' cultivated in Kaifeng, Fitoterapia 134 (2019) 39-43. https://doi.org/10.1016/j.fitote.2019.02.003.

[38]

H. Zhang, X. Li, K. Wu, et al., Antioxidant activities and chemical constituents of flavonoids from the flower of Paeonia ostii, Molecules 22 (2017) 5-20. https://doi.org/10.3390/molecules22010005.

[39]

F.T. Gürağaç Dereli, M. Ilhan, E. Küpeli Akkol, Identification of the main active antidepressant constituents in a traditional Turkish medicinal plant, Centaurea kurdica Reichardt, J. Ethnopharmacol. 249 (2020) 112373-112384. https://doi.org/10.1016/j.jep.2019.112373.

[40]

X. Zhang, S. Zhang, B. Gao, et al., Identification and quantitaitve analysis of phenolic glycosides with antioxidant activity in methanolic extract of Dendrobium catenatum flowers and selection of quality control herb-markers, Food Res. Int. 123 (2019) 732-745. https://doi.org/10.1016/j.foodres.2019.05.040.

[41]

S. Ma, J.M. Zhou, H.S. Wei, et al., Flavones from the flowers of Tridax Procumbens and their antioxidant activity, Chem. Nat. Compd. 56 (2020) 239-241. https://doi.org/10.1007/s10600-020-02996-2.

[42]

Z. Wang, Z. Bai, J. Yan, et al., Anti-diabetic effects of linarin from Chrysanthemi Indici Flos via AMPK activation, Chinese Herb. Med. 14 (2022) 97-103. https://doi.org/10.1016/j.chmed.2021.11.002.

[43]

L. Yang, H. Jiang, S. Wang, et al., Discovering the major antitussive, expectorant, and anti-inflammatory bioactive constituents in Tussilago farfara L. based on the spectrum-effect relationship combined with chemometrics, Molecules 25 (2020) 620-638. https://doi.org/10.3390/molecules25030620.

[44]

Z. Yin, Y. Zhang, J. Zhang, et al., Coagulatory active constituents of Malus pumila Mill. flowers, Chem. Cent. J. 12 (2018) 126-133. https://doi.org/10.1186/s13065-018-0490-6.

[45]

L. Yang, J. He, Anti-inflammatory effects of flavonoids and phenylethanoid glycosides from Hosta plantaginea flowers in LPS-stimulated RAW 264.7 macrophages through inhibition of the NF-κB signaling pathway, BMC Complement. Med. Ther. 22 (2022) 55-64. https://doi.org/10.1186/s12906-022-03540-1.

[46]

L. Cui, M. Xing, L. Xu, et al., Antithrombotic components of Malus halliana Koehne flowers, Food Chem. Toxicol. 119 (2018) 326-333. https://doi.org/10.1016/j.fct.2018.02.049.

[47]

T.X. Wang, J.G. Jiang, Isolation and identification of compounds with antioxidant activity from Citrus aurantium L. var. amara Engl., Mod. Food Sci. Technol. 34 (2018) 73/82-86. https://doi.org/10.13982/j.mfst.1673-9078.2018.7.012.

[48]

C.Y. Shen, J.J. Lin, J.G. Jiang, et al., Potential roles of dietary flavonoids from: Citrus aurantium L. var. amara Engl. in atherosclerosis development, Food Funct. 11 (2020) 561-571. https://doi.org/10.1039/c9fo02336d.

[49]

L. Cui, M. Hu, P. Cao, et al., Chemical constituents and coagulation activity of Syringa oblata Lindl flowers, BMC Chem. 13 (2019) 108-124. https://doi.org/10.1186/s13065-019-0621-8.

[50]

R. Prajapati, S.E. Park, H.J. Park, et al., Identification of a potent and selective human monoamine oxidase-a inhibitor, glycitein, an isoflavone isolated from Pueraria lobata flowers, ACS Food Sci. Technol. 1 (2021) 538-550. https://doi.org/10.1021/acsfoodscitech.0c00152.

[51]

S. Li, S. Li, C. Liu, et al., Extraction and isolation of potential anti-stroke compounds from flowers of Pueraria lobata guided by in vitro PC12 cell model, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1048 (2017) 111-120. https://doi.org/10.1016/j.jchromb.2017.02.009.

[52]

L. Ge, L. Xiao, H. Wan, et al., Chemical constituents from Lonicera japonica flower buds and their anti-hepatoma and anti-HBV activities, Bioorg. Chem. 92 (2019) 103198-103298. https://doi.org/10.1016/j.bioorg.2019.103198.

[53]

L. Yang, Y.M. Lin, Z.W. He, et al., Hostaflavanol A, a new anti-inflammatory and antioxidant activities flavanol from the flowers of Hosta plantaginea, Med. Chem. Res. 29 (2020) 426-430. https://doi.org/10.1007/s00044-019-02491-6.

[54]

Y. Xiao, B. Li, J. Liu, A new constituent against rheumatoid arthritis from the flower buds of Lonicera japonica, Phytochem. Lett. 29 (2019) 160-164. https://doi.org/10.1016/j.phytol.2018.11.019.

[55]

Y.L. Wang, G.F. Hu, S.J. Niu, et al., Separation and identification of activity ingredients in potato, Chinese J. Pestic. Sci. 21 (2019) 19-25. https://doi.org/10.16801/j.issn.1008-7303.2019.0003.

[56]

C. Li, M. Hu, S. Jiang, et al., Evaluation procoagulant activity and mechanism of astragalin, Molecules 25 (2020) 177-193. https://doi.org/10.3390/molecules25010177.

[57]

L. Cui, J. Wang, M. Wang, et al., Chemical composition and glucose uptake effect on 3T3-L1 adipocytes of Ligustrum lucidum Ait. flowers, Food Sci. Hum. Wellness 9 (2020) 124-129. https://doi.org/10.1016/j.fshw.2020.02.002.

[58]

X. Zhang, R. Gao, Y. Liu, et al., Anti-virulence activities of biflavonoids from Mesua ferrea L. flower, Drug Discov. Ther. 13 (2019) 222-227. https://doi.org/10.5582/ddt.2019.01053.

[59]

M.H. Kim, B. Kwon, K.S. Kim, et al., Galuteolin, identified in the extract of Thymus quinquecostatus flowers, is involved in inhibiting melanin biosynthesis in B16/F10 melanoma cells, Nat. Prod. Res. 35 (2021) 5389-5391. https://doi.org/10.1080/14786419.2020.1768091.

[60]

G. Zeng, Z. Wu, W. Cao, et al., Identification of anti-nociceptive constituents from the pollen of Typha angustifolia L. using effect-directed fractionation, Nat. Prod. Res. 34 (2020) 1041-1045. https://doi.org/10.1080/14786419.201 8.1539979.

[61]

N. Oshima, H. Kume, T. Umeda, et al., Structures and inhibitory activities for interleukin-2 production of seasonally variable constituents in flower parts of Magnolia kobus at different growth stages, Chem. Pharm. Bull. 68 (2020) 91-95. https://doi.org/10.1248/cpb.c19-00611.

[62]

R. Wei, Q. Ma, G. Zhong, et al., Isolation and characterization of flavonoid derivatives with anti-prostate cancer and hepatoprotective activities from the flowers of Hosta plantaginea (Lam.) Aschers, J. Ethnopharmacol. 253 (2020) 112685. https://doi.org/10.1016/j.jep.2020.112685.

[63]

X. Xu, P. Wang, B. Wang, et al., Glucose absorption regulation and mechanism of the compounds in Lilium lancifolium Thunb on Caco-2 cells, Food Chem. Toxicol. 149 (2021) 112010-112018. https://doi.org/10.1016/j.fct.2021.112010.

[64]

B.R. Kim, S.B. Paudel, J.W. Nam, et al., Constituents of Coreopsis lanceolate flower and their dipeptidyl peptidase Ⅳ inhibitory effects, Molecules 25 (2020) 4370-4379. https://doi.org/10.3390/molecules25194370.

[65]

H.G. Kim, Y.S. Jung, S.M. Oh, et al., Coreolanceolins A–E, new flavanones from the flowers of Coreopsis lanceolate, and their antioxidant and anti-inflammatory effects, Antioxidants 9 (2020) 1-17. https://doi.org/10.3390/antiox9060539.

[66]

H.G. Kim, H.J. Oh, J.H. Ko, et al., Lanceoleins A–G, hydroxychalcones, from the flowers of Coreopsis lanceolata and their chemopreventive effects against human colon cancer cells, Bioorg. Chem. 85 (2019) 274-281. https://doi.org/10.1016/j.bioorg.2019.01.003.

[67]

P.F. Yang, Y.N. Yang, C.Y. He, et al., New caffeoylquinic acid derivatives and flavanone glycoside from the flowers of Chrysanthemum morifolium and their bioactivities, Molecules 24 (2019) 850-860. https://doi.org/10.3390/molecules24050850.

[68]

L.J. Liu, X.H. Hu, L.N. Guo, et al., Anti-inflammatory effect of the compounds from the flowers of Trollius chinensis, Pak. J. Pharm. Sci. 31 (2018) 1951-1957.

[69]

Y. Zhang, L. Jin, Q. Chen, et al., Hypoglycemic activity evaluation and chemical study on hollyhock flowers, Fitoterapia 102 (2015) 7-14. https://doi.org/10.1016/j.fitote.2015.02.001.

[70]

Y. Hu, J. Li, A.K. Chang, et al., Potential active constituents responsible for treating acute pharyngitis in the flowers of Hosta plantaginea (Lam.) Aschers and their pharmacokinetics, Food Funct. 13 (2022) 3308-3317. https://doi.org/10.1039/d1fo03712a.

[71]

J. He, X. Huang, Y. Wang, et al., A new flavonol glycoside from the flowers of Hosta plantaginea with cyclooxygenases-1/2 inhibitory and antioxidant activities, Nat. Prod. Res. 33 (2019) 1599-1604. https://doi.org/10.1080/14786419.2018.1428591.

[72]

L. Yang, Y. Zhu, Z. He, et al., Plantanone D, a new rare methyl-flavonoid from the flowers of Hosta plantaginea with anti-inflammatory and antioxidant activities, Nat. Prod. Res. 35 (2021) 4331-4337. https://doi.org/10.1080/14786419.2020.1713121.

[73]

Y. Fang, L. Yang, J. He, Plantanone C attenuates LPS-stimulated inflammation by inhibiting NF-κB/iNOS/COX-2/MAPKs/Akt pathways in RAW 264.7 macrophages, Biomed. Pharmacother. 143 (2021) 112104-112112. https://doi.org/10.1016/j.biopha.2021.112104.

[74]

A. Hopia, M. Heinonen, Antioxidant activity of flavonol aglycones and their glycosides in methyl linoleate, J. Am. Oil Chem. Soc. 76 (1999) 139-144. https://doi.org/10.1007/s11746-999-0060-0.

[75]

H. Chang, M. Mi, W. Ling, et al., Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro, Arch. Pharm. Res. 31 (2008) 1137-1144. https://doi.org/10.1007/s12272-001-1280-8.

[76]

C. El-Baba, A. Baassiri, G. Kiriako, et al., Terpenoids' anti-cancer effects: focus on autophagy, Apoptosis 26 (2021) 491-511. https://doi.org/10.1007/s10495-021-01684-y.

[77]

X.D. Wu, L.F. Ding, W.C. Tu, et al., Bioactive sesquiterpenoids from the flowers of Inula japonica, Phytochemistry 129 (2016) 68-76. http://dx.doi.org/10.1016/j.phytochem.2016.07.008.

[78]

Y. Ding, T. Wang, T. Chen, et al., Sesquiterpenoids isolated from the flower of Inula japonica as potential antitumor leads for intervention of paclitaxel-resistant non-small-cell lung cancer, Bioorg. Chem. 101 (2020) 103973. https://doi.org/10.1016/j.bioorg.2020.103973.

[79]

X.N. Hu, J.L. Xu, S.H. Zhang, et al., Chemical constituents and anti-tuberculosis activity in vitro from flowers of Inula hupehensis Ling, Nat Prod Res Dev. 31 (2019) 621-626. https://doi.org/10.16333/j.1001-6880.2019.4.010.

[80]

F. Liu, B. Dong, X. Yang, et al., NO inhibitors function as potential anti-neuroinflammatory agents for AD from the flowers of Inula japonica, Bioorg. Chem. 77 (2018) 168-175. https://doi.org/10.1016/j.bioorg.2018.01.009.

[81]

Y. Hui, J. Cao, J. Lin, et al., Eudesmanolides and other constituents from the flowers of Wedelia trilobata, Chem. Biodivers. 15(3) (2018) e1700411-e1700425. https://doi.org/10.1002/cbdv.201700411.

[82]

Y.D. Mei, H.B. Li, Q.Q. Pang, et al., Lonimacranaldes A-C, three iridoids with novel skeletons from: Lonicera macranthoides, RSC Adv. 9 (2019) 22011-22016. https://doi.org/10.1039/c9ra04029c.

[83]

R. Yang, H. Hao, J. Li, et al., Three new secoiridoid glycosides from the flower buds of Lonicera japonica, Chin. J. Nat. Med. 18 (2020) 70-74. https://doi.org/10.1016/S1875-5364(20)30006-6.

[84]

J. Lee, K. Song, P. Hiebert, et al., Tussilagonone ameliorates psoriatic features in keratinocytes and imiquimod-induced psoriasis-like lesions in mice via NRF2 activation, J. Invest. Dermatol. 140 (2020) 1223-1232. https://doi.org/10.1016/j.jid.2019.12.008.

[85]

Q. Jin, J.W. Lee, H. Jang, et al., Dimeric and trimeric sesquiterpenes from the flower of Inula japonica, Phytochemistry 155 (2018) 107-113. https://doi.org/10.1016/j.phytochem.2018.07.008.

[86]

Z. Zhang, C. Ye, J. Liu, et al., Japonicone A induces apoptosis of bortezomib-sensitive and resistant myeloma cells in vitro and in vivo by targeting IKKβ, Cancer Biol. Med. (2021) 2095-3941. https://doi.org/10.20892/j.issn.2095-3941.2020.0473.

[87]

Y. Zhao, M. Tao, R. Wang, et al., Japonicone V, a sesquiterpene lactone derivative from the flowers of Inula japonica, inhibits hepatitis E virus replication by targeting virus-associated autophagy, J. Funct. Foods 65 (2020) 103755-103751. https://doi.org/10.1016/j.jff.2019.103755.

[88]

Y.D. Mei, H.B. Li, L.X. Liu, et al., A new nitrogen-containing iridoid glycoside from Lonicera macranthoides, Nat. Prod. Res. 35 (2021) 3432-3438. https://doi.org/10.1080/14786419.2019.1705819.

[89]

S.N. Zhang, H.Z. Song, R.J. Ma, et al., Potential anti-diabetic isoprenoids and a long-chain δ-lactone from frangipani (Plumeria rubra), Fitoterapia 147 (2020) 104684-104706. https://doi.org/10.1016/j.fitote.2020.104684.

[90]

H. Zhang, N. Feng, Y.T. Xu, et al., Chemical constituents from the flowers of wild Gardenia jasminoides J. Ellis, Chem. Biodivers. 14 (2017) e1600437-e1600447. https://doi.org/10.1002/cbdv.201600437.

[91]

K.K. Li, S.S. Li, F. Xu, et al., Six new dammarane-type triterpene saponins from Panax ginseng flower buds and their cytotoxicity, J. Ginseng Res. 44 (2020) 215-221. https://doi.org/10.1016/j.jgr.2018.12.008.

[92]

Y.D. Mei, N. Zhang, W.Y. Zhang, et al., Two new ursane-type nortriterpenes from Lonicera macranthoides and their iNOS-inhibitory activities, Chin. J. Nat. Med. 17 (2019) 27-32. https://doi.org/10.1016/S1875-5364(19)30006-8.

[93]

T.H. Lee, W.S. Suh, L. Subedi, et al., Three new oleanane-type triterpenoidal glycosides from Impatiens balsamina and their biological activity, Plants 9 (2020) 1-9. https://doi.org/10.3390/plants9091083.

[94]

L.S. Zhang, Y.L. Wang, Q. Liu, et al., Three new 3,4-seco-cycloartane triterpenoids from the flower of Gardenia jasminoides, Phytochem. Lett. 23 (2018) 172-175. https://doi.org/10.1016/j.phytol.2017.11.006.

[95]

Z.P. Yu, J.S. Zhang, Q. Zhang, et al., Bioactive sesquiterpenoids and sesquiterpenoid glucosides from the flowers of Inula japonica, Fitoterapia 138 (2019) 104292-104301. https://doi.org/10.1016/j.fitote.2019.104292.

[96]

Z.P. Yu, J.H. Yu, J.S. Zhang, et al., Inunicosides A−K, rare polyacylated ent-kaurane diterpenoid glycosides from the flowers of Inula japonica, Tetrahedron 75 (2019) 130732-130741. https://doi.org/10.1016/j.tet.2019.130732.

[97]

H.M. Yuan, L. Qiu, Y. Song, et al., Phenylpropanoids from Zanthoxylum species and their pharmacological activities: a review, Zhongguo Zhongyao Zazhi 46 (2021) 5760-5772. https://doi.org/10.19540/j.cnki.cjcmm.20210531.601.

[98]

Y. Mitani, K. Satake, M. Tsukamoto, I. Nakamura, O. Kadioglu, T. Teruya, T. Yonezawa, B.Y. Cha, T. Efferth, J.T. Woo, H. Nakagawa, Epimagnolin A, a tetrahydrofurofuranoid lignan from Magnolia fargesii, reverses ABCB1-mediated drug resistance, Phytomedicine 51 (2018) 112-119. https://doi.org/10.1016/j.phymed.2018.06.030.

[99]

H.W. Chun, S.J. Kim, T.H. Pham, et al., Epimagnolin A inhibits IL-6 production by inhibiting p38/NF-κB and AP-1 signaling pathways in PMA-stimulated THP-1 cells, Environ. Toxicol. 34 (2019) 796-803. https://doi.org/10.1002/tox.22746.

[100]

J. Lu, H. Zhang, J. Pan, et al., Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways, Arthritis Res. Ther. 23 (2021) 1-13. https://doi.org/10.1186/s13075-021-02512-z.

[101]

T.H. Pham, M.S. Kim, M.Q. Le, et al., Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-κB signaling, Phytomedicine 24 (2017) 96-103. https://doi.org/10.1016/j.phymed.2016.11.014.

[102]

S.U. Lee, H.W. Ryu, S. Lee, et al., Lignans isolated from flower buds of Magnolia fargesii attenuate airway inflammation induced by cigarette smoke in vitro and in vivo, Front. Pharmacol. 9 (2018) 970-983. https://doi.org/10.3389/fphar.2018.00970.

[103]

X.Q. Song, J. Sun, J.H. Yu, et al., Prenylated indole alkaloids and lignans from the flower buds of Tussilago farfara, Fitoterapia 146 (2020) 104729. https://doi.org/10.1016/j.fitote.2020.104729.

[104]

D.G. Zhao, A.Y. Zhou, Z. Du, et al., Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri, Fitoterapia 107 (2015) 122-127. https://doi.org/10.1016/j.fitote.2015.10.012.

[105]

P.F. Yang, Y.N. Yang, Z.M. Feng, et al., Six new compounds from the flowers of Chrysanthemum morifolium and their biological activities, Bioorg. Chem. 82 (2019) 139-144. https://doi.org/10.1016/j.bioorg.2018.10.007.

[106]

M.J.U. Ferreira, Alkaloids in future drug discovery, Molecules 27 (2022) 1347-1451. https://doi.org/10.3390/molecules27041347.

[107]

M. Yano, S. Nakashima, Y. Oda, et al., BBB-permeable aporphine-type alkaloids in Nelumbo nucifera flowers with accelerative effects on neurite outgrowth in PC-12 cells, J. Nat. Med. 74 (2020) 212-218. https://doi.org/10.1007/s11418-019-01368-7.

[108]

L. Azmi, I. Shukla, A. Goutam, et al., In vitro wound healing activity of 1-hydroxy-5,7-dimethoxy-2-naphthalene-carboxaldehyde (HDNC) and other isolates of Aegle marmelos L.: enhances keratinocytes motility via Wnt/β-catenin and RAS-ERK pathways, Saudi Pharm. J. 27 (2019) 532-539. https://doi.org/10.1016/j.jsps.2019.01.017.

[109]

Y. Zhang, J. Liu, M. Wang, et al., Five new compounds from Hosta plantaginea flowers and their anti-inflammatory activities, Bioorg. Chem. 95 (2020) 103494-103501. https://doi.org/10.1016/j.bioorg.2019.103494.

[110]

R. Wei, Q. Ma, Indole alkaloids from Hosta plantaginea and inhibition of steroid 5α-reductase activities in vitro, Chem. Nat. Compd. 56 (2020) 888-891. https://doi.org/10.1007/s10600-020-03176-y.

[111]

Y. Mei, D. Pan, Y. Jiang, et al., Target discovery of chlorogenic acid derivatives from the flower buds of Lonicera macranthoides and their MAO B inhibitory mechanism, Fitoterapia 134 (2019) 297-304. https://doi.org/10.1016/j.fitote.2018.12.009.

[112]

J. Zhang, L. Zhou, L. Cui, et al., Antioxidant and α-glucosidase inhibitiory activity of Cercis chinensis flowers, Food Sci. Hum. Wellness 9 (2020) 313-319. https://doi.org/10.1016/j.fshw.2020.04.003.

[113]

X.C. Zhang, X.F. Yang, T.Z. Gu, et al., Antimicrobial polycyclic polyprenylated acylphoroglucinols from Mesua ferrea flower, Phytochem. Lett. 40 (2020) 84-88. https://doi.org/10.1016/j.phytol.2020.09.016.

[114]

C.C. Zhao, J. Shen, J. Chen, et al., Phenolic glycoside constituents from Brassica rapa flowers and their α-glucosidase inhibitory activity, Nat. Prod. Res. 33 (2019) 3398-3403. https://doi.org/10.1080/14786419.2018.1479704.

[115]

J. Zhang, M. Li, B. Zhang, et al., Five new phenylpropanoid glycosides from the flowers of Paulownia fortunei and their antioxidant activities, Phytochem. Lett. 40 (2020) 176-180. https://doi.org/10.1016/j.phytol.2020.10.004.

[116]

D. Il Hwang, K.J. Won, D.Y. Kim, et al., Cinnamyl alcohol, the bioactive component of chestnut flower absolute, inhibits adipocyte differentiation in 3T3-L1 cells by downregulating adipogenic transcription factors, Am. J. Chin. Med. 45 (2017) 833-846. https://doi.org/10.1142/S0192415X17500446.

[117]

L. Yang, S.T. Jiang, Q.G. Zhou, et al., Chemical constituents from the flower of Hosta plantaginea with cyclooxygenases inhibition and antioxidant activities and their chemotaxonomic significance, Molecules 22 (2017) 1825-1834. https://doi.org/10.3390/molecules22111825.

[118]

Z.C. Fang, Z.Y. Zhou, Z. Xie, et al., Analysis of the chemical compositions of the flower of Musa basjoo Sieb.et Zucc and their bioactivity in vitro, J. Guangdong Pharm. Univ. 33 (2017) 3-8. https://doi.org/10.16809/j.cnki.2096-3653.2017051402.

[119]

J.N. Uwazie, M.T. Yakubu, A.O.T. Ashafa, et al., Identification and characterization of anti-diabetic principle in Senna alata (Linn.) flower using alloxan-induced diabetic male Wistar rats, J. Ethnopharmacol. 261 (2020) 112997-113007. https://doi.org/10.1016/j.jep.2020.112997.

[120]

Y. Liu, W. Huang, Y. Zhu, et al., Acteoside, the main bioactive compound in Osmanthus fragrans flowers, palliates experimental colitis in mice by regulating the gut microbiota, J. Agric. Food Chem. 74 (2022) 1148-1162. https://doi.org/10.1021/acs.jafc.1c07583.

[121]

C.Y. Shen, J.G. Jiang, W. Zhu, et al., Anti-inflammatory effect of essential oil from Citrus aurantium L. var. amara Engl, J. Agric. Food Chem. 65 (2017) 8586-8594. https://doi.org/10.1021/acs.jafc.7b02586.

[122]

C.Y. Shen, T.X. Wang, J.G. Jiang, et al., Bergaptol from blossoms of Citrus aurantium L. var. amara Engl inhibits LPS-induced inflammatory responses and ox-LDL-induced lipid deposition, Food Funct. 11 (2020) 4915-4926. https://doi.org/10.1039/C9FO00255C.

[123]

L. Yang, L. Cao, C. Li, et al., Hostaflavone A from Hosta plantaginea (Lam.) Asch. blocked NF-κB/iNOS/COX-2/MAPKs/Akt signaling pathways in LPS-induced RAW 264.7 macrophages, J. Ethnopharmacol. 282 (2022) 114605-114612. https://doi.org/10.1016/j.jep.2021.114605.

[124]

B.S. Choi, Y.J. Kim, Y.P. Yoon, et al., Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells, Korean J. Physiol. Pharmacol. 22 (2018) 671-677. https://doi.org/10.4196/kjpp.2018.22.6.671.

[125]

H.J. Cheon, S.H. Nam, J.K. Kim, Tussilagone, a major active component in Tussilago farfara, ameliorates inflammatory responses in dextran sulphate sodium-induced murine colitis, Chem. Biol. Interact. 294 (2018) 74-80. https://doi.org/10.1016/j.cbi.2018.08.022.

[126]

J. Zhou, R.P. Yang, W. Song, et al., Antiplatelet activity of tussilagone via inhibition of the GPVI downstream signaling pathway in platelets, Front. Med. 7 (2020) 380-390. https://doi.org/10.3389/fmed.2020.00380.

[127]

X. Hu, Z. Yin, X. Chen, et al., Tussilagone inhibits osteoclastogenesis and periprosthetic osteolysis by suppressing the NF-κB and P38 MAPK signaling pathways, Front. Pharmacol. 11 (2020) 1-14. https://doi.org/10.3389/fphar.2020.00385.

[128]

C.B.S. Lau, Anti-Diabetic effects of Edgeworthia chrysantha and Edgeworthia gardneri flower buds – an ethnic herbal tea in China, Biomed. J. Sci. Tech. Res. 28 (2020) 21986-21992. https://doi.org/10.26717/BJSTR.2020.28.004717.

[129]

Y. Zhang, L.S. Yan, Y. Ding, et al., Edgeworthia gardneri (Wall.) Meisn. water extract ameliorates palmitate induced insulin resistance by regulating IRS1/GSK3b/FOXO1 signaling pathway in human HepG2 hepatocytes, Front. Pharmacol. 10 (2020) 1666-1682. https://doi.org/10.3389/fphar.2019.01666.

[130]

X. Meng, Q. Li, R. Shi, et al., Food supplements could be an effective improvement of diabetes mellitus: a review, J. Future Foods 1(1) (2021) 67-81. https://doi.org/10.1016/j.jfutfo.2021.09.003.

[131]

Y. Zhao, J. Wei, C. Li, et al., A comprehensive review on mechanism of natural products against Staphylococcus aureus, J. Future Foods 2(1) (2022) 25-33. https://doi.org/10.1016/j.jfutfo.2022.03.014.

[132]

Y. Zhang, P. Lv, J. Ma, et al., Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo, Acta Pharm. Sin. B. 12 (2022) 890-906. https://doi.org/10.1016/j.apsb.2021.07.010.

[133]

C. Li, Y. Cui, J. Lu, et al., Spectrum-effect relationship of immunologic activity of Ganoderma lucidum by UPLC-MS/MS and component knock-out method, Food Sci. Hum. Wellness 10 (2021) 278-288. https://doi.org/10.1016/j.fshw.2021.02.019.

Food Science and Human Wellness
Pages 1020-1052
Cite this article:
Liu X, Wang S, Cui L, et al. Flowers: precious food and medicine resources. Food Science and Human Wellness, 2023, 12(4): 1020-1052. https://doi.org/10.1016/j.fshw.2022.10.022

992

Views

69

Downloads

12

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 20 August 2022
Revised: 30 August 2022
Accepted: 20 September 2022
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return