AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Physicochemical, structural characterization, and antioxidant activities of chondroitin sulfate from Oreochromis niloticus bones

Jun YangMingyue ShenTing WuXianxiang ChenHuiliang WenJianhua Xie( )
State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

In this study, chondroitin sulfate was extracted from Oreochromis niloticus bones (OCS) and isolated to three fractions (OCS-1, OCS-2, and OCS-3). The physicochemical properties and structure characterization including monosaccharide, disaccharide compositions, molecular weight (Mw) of OCS were determined by HPAEC, HPLC-SAX, HPGPC, FT-IR spectra, and 1D/2D NMR. Moreover, their thermal properties, crystalline structure, and microstructure were also analyzed. Results showed that their Mw were between 10 kDa and 50 kDa. CS-6 was the predominant disaccharide unit in four OCS, and the CS-4/CS-6 ratios were close to CS from shark cartilage. Besides, the results of antioxidant activity showed that different fractions of OCS had a distinct DPPH radical, hydroxyl radical, and ABTS+ radical scavenging activity. OCS-1 has the highest scavenging activities in DPPH and hydroxyl radical compared with other fractions, which showed a higher medicinal value. Those findings may lay some theoretical basis for the potential application development of OCS.

References

[1]

Z.H. Duan, C.Y. Cheng, Y. Hai, et al., Determination and identification of chondroitin sulfate from tilapia byproducts, Adv. Mat. Res. 690-693 (2013) 1318-1321. https://doi.org/10.4028/www.scientific.net/AMR.690-693.1318.

[2]

A.P.V. Oliveira, V. de Abreu Feitosa, J.M. de Oliveira, et al., Characteristics of chondroitin sulfate extracted of tilapia (Oreochromis niloticus) processing, Procedia Eng. 200 (2017) 193-199. https://doi.org/10.1016/j.proeng.2017.07.028.

[3]

T. Nakano, M. Betti, Z. Pietrasik, Extraction, isolation and analysis of chondroitin sulfate glycosaminoglycans, Recent Pat. Food, Nutr-Agric. 2 (2010) 61-74.

[4]

J. Yang, M. Shen, H. Wen, et al., Recent advance in delivery system and tissue engineering applications of chondroitin sulfate, Carbohydr. Polym. 230 (2020) 115650. https://doi.org/10.1016/j.carbpol.2019.115650.

[5]

Q. Li, C. Cai, Y. Chang, et al., A novel structural fucosylated chondroitin sulfate from Holothuria Mexicana and its effects on growth factors binding and anticoagulation, Carbohydr. Polym. 181 (2018) 1160-1168. https://doi.org/10.1016/j.carbpol.2017.10.100.

[6]

W. Zhu, Y. Ji, Y. Wang, et al., Structural characterization and in vitro antioxidant activities of chondroitin sulfate purified from Andrias davidianus cartilage, Carbohydr. Polym. 196 (2018) 398-404. https://doi.org/10.1016/j.carbpol.2018.05.047.

[7]

Z. Ren, Y. Ji, Y. Wang, et al., Chondroitin sulfate from Scophthalmus maximus for treating osteoarthritis, Int. J. Biol. Macromol. 108 (2018) 1158-1164. https://doi.org/10.1016/j.ijbiomac.2017.11.091.

[8]

G.M. Campo, A. Avenoso, S. Campo, et al., Antioxidant activity of chondroitin sulfate, Adv. pharmacol. 53 (2006) 417-431. https://doi.org/10.1016/S1054-3589(05)53020-5.

[9]

A.L. da Cunha, J.A.K. Aguiar, F.S.C. da Silva, et al., Do chondroitin sulfates with different structures have different activities on chondrocytes and macrophages? Int. J. Biol. Macromol. 103 (2017) 1019-1031. https://doi.org/10.1016/j.ijbiomac.2017.05.123.

[10]

N. Volpi, Fractionation of heparin, dermatan sulfate, and chondroitin sulfate by sequential precipitation: a method to purify a single glycosaminoglycan species from a mixture, Anal. Biochem. 218 (1994) 382-391. https://doi.org/10.1006/abio.1994.1196.

[11]

N. Blumenkrantz, G. Asboe-Hansen, New method for quantitative determination of uronic acids, Anal. Biochem. 54 (1973) 484-489. https://doi.org/10.1016/0003-2697(73)90377-1.

[12]

Q. Song, L. Jiang, X. Yang, et al., Physicochemical and functional properties of a water-soluble polysaccharide extracted from Mung bean (Vigna radiate L. ) and its antioxidant activity, Int. J. Biol. Macromol. 138 (2019) 874-880. https://doi.org/10.1016/j.ijbiomac.2019.07.167.

[13]

A.F. Ahmed, F.A.K. Attia, Z. Liu, et al., Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L. ) plants, Food Sci. Hum. Well. 8 (2019) 299-305. https://doi.org/10.1016/j.fshw.2019.07.004.

[14]

C. Rekha, G. Poornima, M. Manasa, et al., Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits, Chem. Sci. Trans. 1 (2012) 303-310. https://doi.org/10.7598/cst2012.182.

[15]

J.A. Vázquez, M. Blanco, J. Fraguas, et al., Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes, Food Chem. 198 (2016) 28-35. https://doi.org/10.1016/j.foodchem.2015.10.087.

[16]

H. Bougatef, F. Krichen, F. Capitani, et al., Chondroitin sulfate/dermatan sulfate from corb (Sciaena umbra) skin: purification, structural analysis and anticoagulant effect, Carbohydr. Polym. 196 (2018) 272-278. https://doi.org/10.1016/j.carbpol.2018.05.019.

[17]

L. Jiang, W. Wang, P. Wen, et al., Two water-soluble polysaccharides from mung bean skin: physicochemical characterization, antioxidant and antibacterial activities, Food Hydrocoll. 100 (2020) 105412. https://doi.org/10.1016/j.foodhyd.2019.105412.

[18]

Y. Wang, Y. Yang, D. Pan, et al., Metabolite profile based on 1H NMR of broiler chicken breasts affected by wooden breast myodegeneration, Food Chem. 310 (2020) 125852. https://doi.org/10.1016/j.foodchem.2019.125852.

[19]

R.S. Cavalcante, A.S. Brito, L.C. Palhares, et al., 2,3-Di-O-sulfo glucuronic acid: an unmodified and unusual residue in a highly sulfated chondroitin sulfate from Litopenaeus vannamei, Carbohydr. Polym. 183 (2018) 192-200. https://doi.org/10.1016/j.carbpol.2017.12.018.

[20]

J. Zhang, L. Zhou, L. Cui, et al., Antioxidant and α-glucosidase inhibitiory activity of Cercis chinensis flowers, Food Sci. Hum. Well. 9 (2020) 313-319. https://doi.org/10.1016/j.fshw.2020.04.003.

[21]

J.H. Xie, C.J. Dong, S.P. Nie, et al., Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal. ) Iljinskaja leaves, Food Chem. 186 (2015) 97-105. https://doi.org/10.1016/j.foodchem.2014.06.106.

[22]

K. Ajisaka, Y. Oyanagi, T. Miyazaki, et al., Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates, Biosci. Biotech. Biochem. 80 (2016) 1179-1185. https://doi.org/10.1080/09168451.2016.1141036.

[23]

Y. Xiao, Q. Huang, Z. Zheng, et al., Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities, Int. J. Biol. Macromol. 99 (2017) 483-491. https://doi.org/10.1016/j.ijbiomac.2017.03.016.

[24]

X. Hu, H.D. Goff, Fractionation of polysaccharides by gradient nonsolvent precipitation: a review, Trends Food Sci. Tech. 81 (2018) 108-115. https://doi.org/10.1016/j.tifs.2018.09.011.

[25]

S.Y. Cho, J.S. Sim, C.S. Jeong, et al., Effects of low molecular weight chondroitin sulfate on type Ⅱ collagen-induced arthritis in DBA/1J mice, Biol. Pharm. Bull. 27 (2004) 47-51. https://doi.org/10.1248/bpb.27.47.

[26]

F. Maccari, F. Ferrarini, N. Volpi, Structural characterization of chondroitin sulfate from sturgeon bone, Carbohydr. Res. 345 (2010) 1575-1580. https://doi.org/10.1016/j.carres.2010.05.016.

[27]

J. Yang, M. Shen, T. Wu, et al., Role of salt ions and molecular weights on the formation of Mesona chinensis polysaccharide-chitosan polyelectrolyte complex hydrogel, Food Chem. 333 (2020) 127493. https://doi.org/10.1016/j.foodchem.2020.127493.

[28]

W. Garnjanagoonchorn, L. Wongekalak, A. Engkagul, Determination of chondroitin sulfate from different sources of cartilage, Chem. Eng. Process. 46 (2007) 465-471. https://doi.org/10.1016/j.cep.2006.05.019.

[29]

J.R. Amrutkar, S.G. Gattani, Chitosan–chondroitin sulfate based matrix tablets for colon specific delivery of indomethacin, AAPS pharm. 10 (2009) 670-677.

[30]

A. Mucci, L. Schenetti, N. Volpi, 1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin, Carbohydr. Polym. 41 (2000) 37-45. https://doi.org/10.1016/S0144-8617(99)00075-2.

[31]

R. Novoa-Carballal, R. Pérez-Martín, M. Blanco, et al., By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: a valuable source of predominantly 6S sulfated chondroitin sulfate, Carbohydr. Polym. 157 (2017) 31-37. https://doi.org/10.1016/j.carbpol.2016.09.050.

[32]

N.E. Ustyuzhanina, M.I. Bilan, E.G. Panina, et al., Structure and anti-inflammatory activity of a new unusual fucosylated chondroitin sulfate from Cucumaria djakonovi, Marine drugs 16 (2018) 389. https://doi.org/10.3390/md16100389.

[33]

L. Lin, M. Shen, S. Liu, et al., An acidic heteropolysaccharide from Mesona chinensis: rheological properties, gelling behavior and texture characteristics, Int. J. Biol. Macromol. 107 (2018) 1591-1598. https://doi.org/10.1016/j.ijbiomac.2017.10.029.

[34]

J. Huang, X. Lin, B. Xue, et al., Impact of polyphenols combined with high-fat diet on rats' gut microbiota, J. Funct. Foods 26 (2016) 763-771. https://doi.org/10.1016/j.jff.2016.08.042.

[35]

Z. Maksimović, Đ. Malenčić, N. Kovačević, Polyphenol contents and antioxidant activity of Maydis stigma extracts, Bioresour. Technol. 96 (2005) 873-877. https://doi.org/10.1016/j.biortech.2004.09.006.

[36]

Y. Yu, M. Shen, Q. Song, et al., Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review, Carbohydr. Polym. 183 (2018) 91-101. https://doi.org/10.1016/j.carbpol.2017.12.009.

Food Science and Human Wellness
Pages 1102-1108
Cite this article:
Yang J, Shen M, Wu T, et al. Physicochemical, structural characterization, and antioxidant activities of chondroitin sulfate from Oreochromis niloticus bones. Food Science and Human Wellness, 2023, 12(4): 1102-1108. https://doi.org/10.1016/j.fshw.2022.10.027

487

Views

50

Downloads

16

Crossref

14

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 08 January 2021
Revised: 04 February 2021
Accepted: 08 February 2021
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return