AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Impact of Bifidobacterium longum NSP001 on DSS-induced colitis in conventional and humanised mice

Menglin ChenHong YaoHuizi TanWenqi HuangQuanyong WuShaoping Nie( )
State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
Show Author Information

Abstract

Most scientific investigations regarding inflammatory bowel disease (IBD) pathogenesis or therapeutic strategies use dextran sulfate sodium (DSS)-induced models performed on mice. However, differences between human and animal microbiota may confound the data reproducibility from rodent experiments to clinical trials. In this study, the intervention effects of Bifidobacterium longum NSP001 on DSS-induced colitis were investigated using mice colonized with either native or humanised microbiota. Disorders in disease activity index (DAI), morphology and histology of colon tissue, intestinal permeability, and secretion of MPO, TNF-α and IL-6 were ameliorated by daily intake of live B. longum NSP001 cells in both conventional and humanised colitis mice. But the abnormal thymus index, and colonic production of ZO-1 and iNOS were improved only in colitis mice treated with B. longum NSP001 and humanised microbiome. The accumulation of acetic acid and propionic acid in colon microbiome, and the optimization of primary bile acid biosynthesis and glycerophospholipid metabolism pathways in cecum commensals were likely to explain the beneficial effects of B. longum NSP001. These data revealed that intestinal microbiome baseline would possibly affect the manifestation features of interventions by probiotics or dietary components and highlighted the necessity to include humanised microbiome while investigating potential therapeutic strategies based on rodent models.

References

[1]

B. Siegmund, M. Zeitz, Innate and adaptive immunity in inflammatory bowel disease, World J. Gastroenterol. 17(27) (2011) 3178-3183. https://doi.org/10.3748/wjg.v17.i27.3178.

[2]

T.A. Malik, Inflammatory bowel disease: historical perspective, epidemiology, and risk factors, Surg. Clin. North Am. 95(6) (2015) 1105-1122. https://doi.org/10.1016/j.suc.2015.07.006.

[3]

P.K. Randhawa, K. Singh, N. Singh, et al., A review on chemical-induced inflammatory bowel disease models in rodents, Korean J. Physiol. Pharmacol. 18(4) (2014) 279-288. https://doi.org/10.4196/kjpp.2014.18.4.279.

[4]

A.W. Walker, J.D. Sanderson, C. Churcher, et al., High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease, BMC Microbiol. 11(1) (2011) 7. https://doi.org/10.1186/1471-2180-11-7.

[5]

A.I. Sanchez-Garrido, V. Prieto-Vicente, V. Blanco-Gozalo, et al., Preventive effect of cardiotrophin-1 administration before DSS-Induced ulcerative colitis in mice, J. Clin. Med. 8(12) (2019) 2086. https://doi.org/10.3390/jcm8122086.

[6]

P. Tian, R. Zou, L. Song, et al., Ingestion of Bifidobacterium longum subspecies infantis strain CCFM687 regulated emotional behavior and the central BDNF pathway in chronic stress-induced depressive mice through reshaping the gut microbiota, Food Funct. 10(11) (2019) 7588-7598. https://doi.org/10.1039/c9fo01630a.

[7]

J. Liang, S.M. Sha, K.C. Wu, Role of the intestinal microbiota and fecal transplantation in inflammatory bowel diseases, J. Dig. Dis. 15(12) (2014) 641-646. https://doi.org/10.1111/1751-2980.12211.

[8]

A.D. Kostic, R.J. Xavier, G. Dirk, The microbiome in inflammatory bowel disease: current status and the future ahead, Gastroenterology 146(6) (2014) 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009.

[9]

P.R. Marteau, M. de Vrese, C.J. Cellier, et al., Protection from gastrointestinal diseases with the use of probiotics, Am. J. Clin. Nutr. 73(2 Suppl) (2001) 430S-436S. https://doi.org/10.1093/ajcn/73.2.430s.

[10]

J. Singh, A. Rivenson, M. Tomita, et al., Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis, Carcinogenesis 18(4) (1997) 833-841. https://doi.org/10.1093/carcin/18.4.833.

[11]

F. Turroni, V. Taverniti, P. Ruas-Madiedo, et al., Bifidobacterium bifidum PRL2010 modulates the host innate immune response, Appl. Environ. Microb. 80(2) (2014) 730-740. https://doi.org/10.1128/AEM.03313-13.

[12]

S. Yamazaki, T. Kaneko, N. Taketomo, et al., 2-Amino-3-carboxy-1,4-naphthoquinone affects the end-product profile of bifidobacteria through the mediated oxidation of NAD(P)H, Appl. Microbiol. Biot. 59(1) (2002) 72-78. https://doi.org/10.1007/s00253-002-0982-z.

[13]

J. Stephani, K. Radulovic, J.H. Niess, Gut microbiota, probiotics and inflammatory bowel disease, Arch. Immunol. Ther. Exp. (Warsz). 59(3) (2011) 161-177. https://doi.org/10.1007/s00005-011-0122-5.

[14]

D. Meng, W.S. Zhu, K. Ganguli, et al., Anti-inflammatory effects of Bifidobacterium longum subspinfantis secretions on fetal human enterocytes are mediated by TLR-4 receptors, Am. J. Physiol. Gastrointest. Liver Physiol. 311(4) (2016) G744-G753. https://doi.org/10.1152/ajpgi.00090.2016.

[15]

K.R. Bergmann, R. Tian, A. Kushnir, et al., Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis, Am. J. Pathol. 182(5) (2013) 1595-1606. https://doi.org/10.1016/j.ajpath.2013.01.013.

[16]

X.Y. Gao, Q.H. Xie, L. Liu, et al., Metabolic adaptation to the aqueous leaf extract of Moringa oleifera Lam. supplemented diet is related to the modulation of gut microbiota in mice, Appl. Microbiol. Biot. 101(12) (2017) 5115-5130. https://doi.org/10.1007/s00253-017-8233-5.

[17]

F. Bäckhed, H. Ding, T. Wang, et al., The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. USA. 101(44) (2004) 15718-15723. https://doi.org/10.1073/pnas.0407076101.

[18]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature 444(7122) (2006) 1027-1031. https://doi.org/10.1038/nature05414.

[19]

L.L. Fan, S. Zuo, H.Z. Tan, et al., Preventive effects of pectin with various degrees of esterification on ulcerative colitis in mice, Food Funct. 11(4) (2020) 2886-2897. https://doi.org/10.1039/c9fo03068a.

[20]

A. Zarrinpar, A. Chaix, Z.Z. Xu, et al., Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism, Nat. Commun. 9(1) (2018) 2872. https://doi.org/10.1038/s41467-018-05336-9.

[21]

D.H. Reikvam, A. Erofeev, A. Sandvik, et al., Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression, PLoS One 6(3) (2011) e17996. https://doi.org/10.1371/journal.pone.0017996.

[22]

H.S. Cooper, S.N. Murthy, R.S. Shah, et al., Clinicopathologic study of dextran sulfate sodium experimental murine colitis, Lab. Invest. 69(2) (1993) 238-249.

[23]

X.T. Zhou, W.C. Qi, T. Hong, et al., Exopolysaccharides from Lactobacillus plantarum NCU116 regulate intestinal epithelial barrier function via STAT3 signaling pathway, J. Agric. Food Chem. 66(37) (2018) 9719-9727. https://doi.org/10.1021/acs.jafc.8b03340.

[24]

A. Sulaiman, H. Zuzana, S. Behnam, et al., Dynamics of early histopathological changes in GVHD after busulphan/cyclophosphamide conditioning regimen, Int. J. Clin. Exp. Patho. 4(6) (2011) 596-605.

[25]

B. Chassaing, J.D. Aitken, M. Malleshappa, et al., Dextran sulfate sodium (DSS)-induced colitis in mice, Curr. Protoc. Immunol. 104(1) (2014) 1-14. https://doi.org/10.1002/0471142735.im1525s104.

[26]

P.D. Cani, S. Possemiers, Y. Guiot, et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut 58(8) (2009) 1091-1103. https://doi.org/10.1136/gut.2008.165886.

[27]

H. Tan, J. Zhao, H. Zhang, et al., Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice, Appl. Microbiol. Biotechnol. 103(5) (2019) 2353-2365. https://doi.org/10.1007/s00253-019-09617-1.

[28]

L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359(6380) (2018) 1151-1156. https://doi.org/10.1126/science.aao5774.

[29]

J. Zhou, Z. Zhou, P. Ji, et al., Effect of fecal microbiota transplantation on experimental colitis in mice, Exp. Ther. Med. 17(4) (2019) 2581-2586. https://doi.org/10.3892/etm.2019.7263.

[30]

M. Lleal, G. Sarrabayrouse, J. Willamil, et al., A single faecal microbiota transplantation modulates the microbiome and improves clinical manifestations in a rat model of colitis, Ebio. Medicine 48 (2019) 630-641. https://doi.org/10.1016/j.ebiom.2019.10.002.

[31]

M. Harbord, R. Eliakim, D. Bettenworth, et al., Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: Definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders, J. Crohns. Colitis 11(6) (2017) 649-670. https://doi.org/10.1093/ecco-jcc/jjx008.

[32]

D. Pizzuti, M. Bortolami, E. Mazzon, et al., Transcriptional downregulation of tight junction protein ZO-1 in active coeliac disease is reversed after a gluten-free diet, Dig. Liver Dis. 36(5) (2004) 337-341. https://doi.org/10.1016/j.dld.2004.01.013.

[33]

B. Xu, Y. Li, M. Xu, et al., Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function, Acta. Pharmacol. Sin. 38(5) (2017) 688-698. https://doi.org/10.1038/aps.2016.168.

[34]

S. Stefan, R. Andreas, P. Ralf, et al., Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease, Gastroenterology 101(4) (1991) 1020-1030. https://doi.org/10.1016/0016-5085(91)90729-5.

[35]

G.D. Buffinton, W.F. Doe, Depleted mucosal antioxidant defences in inflammatory bowel disease, Free Radic Biol. Med. 19(6) (1995) 911-918. https://doi.org/10.1016/0891-5849(95)94362-h.

[36]

A.E.V. Quaglio, A.C.S. Castilho, L.C.D. Stasi, Experimental evidence of heparanase, Hsp70 and NF-κB gene expression on the response of anti-inflammatory drugs in TNBS-induced colonic inflammation, Life Sci. 141 (2015) 179-187. https://doi.org/10.1016/j.lfs.2015.09.023.

[37]

R. Toumi, I. Soufli, H. Rafa, et al., Probiotic bacteria lactobacillus and bifidobacterium attenuate inflammation in dextran sulfate Sodium-Induced experimental colitis in mice, Int. J. Immunopathol. Ph. 27(4) (2014) 615-627. https://doi.org/10.1177/039463201402700418.

[38]

L. Zuo, K.T. Yuan, L. Yu, et al., Bifidobacterium infantis attenuates colitis by regulating T cell subset responses, World J. Gastroenterol. 20(48) (2014) 18316-18329. https://doi.org/10.3748/wjg.v20.i48.18316.

[39]

C.Z. Lin, X.L. Cai, J. Zhang, et al., Role of gut microbiota in the development and treatment of colorectal cancer, Digestion 100(1) (2019) 72-78. https://doi.org/10.1159/000494052.

[40]

S. Fukuda, H. Toh, K. Hase, et al., Bifidobacteria can protect from enteropathogenic infection through production of acetate, Nature 469(7331) (2011) 543-547. https://doi.org/10.1038/nature09646.

[41]

E. Hosseini, C. Grootaert, W. Verstraete, et al., Propionate as a health-promoting microbial metabolite in the human gut, Nutr Rev. 69(5) (2011) 245-258. https://doi.org/10.1111/j.1753-4887.2011.00388.x.

[42]

R.K. Cruz-Bravo, R.G. Guevara-González, M. Ramos-Gómez M, et al., The fermented non-digestible fraction of common bean (Phaseolus vulgaris L.) triggers cell cycle arrest and apoptosis in human colon adenocarcinoma cells, Genes Nutr. 9(1) (2014) 359. https://doi.org/10.1007/s12263-013-0359-1.

[43]

W.J. Yang, T.M. Yu, X.S. Huang, et al., Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity, Nat. Commun. 11(1) (2020) 4457. https://doi.org/10.1038/s41467-020-18262-6.

[44]

P. Gonçalves, I. Gregório, T.A. Catarino, et al., The effect of oxidative stress upon the intestinal epithelial uptake of butyrate, Eur. J. Pharmacol. 699(1-3) (2013) 88-100. https://doi.org/10.1016/j.ejphar.2012.11.029.

[45]

K.Y. Fung, L. Cosgrove, T. Lockett, et al., A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate, Br. J. Nutr. 108(5) (2012) 820-831. https://doi.org/10.1017/S0007114512001948.

[46]

M. Joossens, G. Huys, M. Cnockaert, et al., Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives, Gut 60(5) (2011) 631-637. https://doi.org/10.1136/gut.2010.223263.

[47]

S.H. Shan, C.H. Wu, J.Y. Shi, et al., Inhibitory effects of peroxidase from Foxtail Millet Bran on colitis-associated colorectal carcinogenesis by the blockade of glycerophospholipid metabolism, J. Agric. Food Chem. 68(31) (2020) 8295-8307. https://doi.org/10.1021/acs.jafc.0c03257.

[48]

N. Jiao, S.S. Baker, A. Chapa-Rodriguez, et al., Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD, Gut 67(10) (2018) 1881-1891. https://doi.org/10.1136/gutjnl-2017-314307.

[49]

J. Zou, Y. Shen, M. Chen, et al., Lizhong decoction ameliorates ulcerative colitis in mice via modulating gut microbiota and its metabolites, Appl. Microbiol. Biotechnol. 104(13) (2020) 5999-6012. https://doi.org/10.1007/s00253-020-10665-1.

[50]

J.A. Winston, C.M. Theriot, Diversification of host bile acids by members of the gut microbiota, Gut Microbes. 11(2) (2020) 158-171. https://doi.org/10.1080/19490976.2019.1674124.

[51]

D. Chiara, R. Stefania, B. Fabiola, et al., Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice, Cell Rep. 7(1) (2014) 12-18. https://doi.org/10.1016/j.celrep.2014.02.032.

Food Science and Human Wellness
Pages 1109-1118
Cite this article:
Chen M, Yao H, Tan H, et al. Impact of Bifidobacterium longum NSP001 on DSS-induced colitis in conventional and humanised mice. Food Science and Human Wellness, 2023, 12(4): 1109-1118. https://doi.org/10.1016/j.fshw.2022.10.028

778

Views

54

Downloads

7

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 17 January 2021
Revised: 28 February 2021
Accepted: 24 March 2021
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return