AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ameliorative effect of Lacticaseibacillus rhamnosus Fmb14 from Chinese yogurt on hyperuricemia

Hongyuan ZhaoaXiaoyu ChenaFanqiang MengaLibang ZhouaXinyi PangbZhaoxin Lua( )Yingjian Lub( )
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Hyperuricemia is a critical threat to human health, and a high inosine diet can increase the prevalence of it. Lacticaseibacillus rhamnosus Fmb14 was isolated from traditional fermented Chinese yogurt, and its inosine degradation rate reached 36.3 % at 109 CFU/mL for 24 h. LC-MS analysis revealed that high concentrations of inosine could activate compensatory metabolic pathways of L. rhamnosus Fmb14 to catalyse inosine as an energy source and produce intracellular folic acid and riboflavin. The contents of folic acid and riboflavin were 6.0 and 4.3 fold increased after inosine treatment in the cell-free extracts (CFE). L. rhamnosus Fmb14 CFE treatment ameliorates hyperuricemia through xanthine oxidase (XOD) inhibition and ATP-binding cassette subfamily G member 2 (ABCG2) promotion, both of which are responsible for uric acid (UA) synthesis and secretion in HepG2 and Caco2 cells, respectively. The in vivo results showed that the serum UA level decreased from 236.28 to 149.28 μmol/L after 8 weeks of oral administration of L. rhamnosus Fmb14 in inosine-induced hyperuricemia model mice. Our results revealed that L. rhamnosus Fmb14 has a potential as a biological therapeutic agent in hyperuricemia prevention.

References

[1]

Z. Younossi, Q.M. Anstee, M. Marietti, et al., Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention, Nat. Rev. Gastro. Hepat. 15 (2018) 11-20. https://doi.org/10.1038/nrgastro.2017.109.

[2]

L.A.B. Joosten, T.O. Crisan, P. Bjornstad, et al., Asymptomatic hyperuricaemia: a silent activator of the innate immune system, Nat. Rev. Rheumatol. 16 (2020) 75-86. https://doi.org/10.1038/s41584-019-0334-3.

[3]

C. Mattiuzzi, G. Lippi, Recent updates on worldwide gout epidemiology, Clin. Rheumatol. 39 (2020) 1061-1063. https://doi.org/10.1007/s10067-019-04868-9.

[4]

F. Dabbagh, M.B. Ghoshoon, S. Hemmati, et al., Engineering human urate oxidase: towards reactivating it as an important therapeutic enzyme, Curr. Pharm. Biotechnol. 17 (2016) 141-146. https://doi.org/10.2174/1389201016666150907113055.

[5]

D. Bursill, W.J. Taylor, R. Terkeltaub, et al., Gout, hyperuricemia, and crystal-associated disease network consensus statement regarding labels and definitions for disease elements in gout, Arthritis Care Res. 71 (2019) 427-434. https://doi.org/10.1002/acr.23607.

[6]

H.K. Choi, K. Atkinson, E.W. Karlson, et al., Purine-rich foods, dairy and protein intake, and the risk of gout in men, N. Engl. J. Med. 350 (2004) 1093-1103. https://doi.org/10.1056/NEJMoa035700.

[7]

N. Dalbeth, H.K. Choi, L.A.B. Joosten, et al., Gout, Nat. Rev. Dis. Primers 5 (2019) 17. https://doi.org/10.1038/s41572-019-0115-y.

[8]

J. Chao, R. Terkeltaub, A critical reappraisal of allopurinol dosing, safety, and efficacy for hyperuricemia in gout, Curr. Rheumatol. Rep. 11 (2009) 135-140. https://doi.org/10.1007/s11926-009-0019-z.

[9]

V.F. Azevedo, I.A. Kos, A.B. Vargas-Santos, et al., Benzbromarone in the treatment of gout, Adv. Rheumatol. 59 (2019). https://doi.org/10.1186/s42358-019-0080-x.

[10]

R. Terkeltaub, Update on gout: new therapeutic strategies and options, Nat. Rev. Rheumatol. 6 (2010) 30-38. https://doi.org/10.1038/nrrheum.2009.236.

[11]

J. Suez, N. Zmora, E. Segal, et al., The pros, cons, and many unknowns of probiotics, Nat. Med. 25 (2019) 716-729. https://doi.org/10.1038/s41591-019-0439-x.

[12]

S. Fadda, P. Anglade, F. Baraige, et al., Adaptive response of Lactobacillus sakei 23K during growth in the presence of meat extracts: a proteomic approach, Int. J. Food Microbiol. 142 (2010) 36-43. https://doi.org/10.1016/j.ijfoodmicro.2010.05.014.

[13]

I. Handayani, T. Utami, C. Hidayat, et al., Screening of lactic acid bacteria producing uricase and stability assessment in simulated gastrointestinal conditions, Int. Food Res. J. 25 (2018) 1661-1667.

[14]

Y. Wu, Z. Ye, P. Feng, et al., Limosilactobacillus fermentum JL-3 isolated from "Jiangshui" ameliorates hyperuricemia by degrading uric acid, Gut Microbes 13 (2021) 1-18. https://doi.org/10.1080/19490976.2021.1897211.

[15]

K. Pavelcova, J. Bohata, M. Pavlikova, et al., Evaluation of the influence of genetic variants of SLC2A9(GLUT9) and SLC22A12(URAT1) on the development of hyperuricemia and gout, J. Clin. Med. 9 (2020) 17. https://doi.org/10.3390/jcm9082510.

[16]

B.J. Orlando, M.F. Liao, ABCG2 transports anticancer drugs via a closed-toopen switch, Nat. Commun. 11 (2020) 11. https://doi.org/10.1038/s41467-020-16155-2.

[17]

C. Tang, F.Q. Meng, X.Y. Pang, et al., Protective effects of Lactobacillus acidophilus NX2-6 against oleic acid-induced steatosis, mitochondrial dysfunction, endoplasmic reticulum stress and inflammatory responses, J. Funct. Foods 74 (2020) 12. https://doi.org/10.1016/j.jff.2020.104206.

[18]

G. Jin, Y. Zhu, Y. Xu, Mystery behind Chinese liquor fermentation, Trends Food Sci. Technol. 63 (2017) 18-28. https://doi.org/10.1016/j.tifs.2017.02.016.

[19]

C.S. Ranadheera, N. Naumovski, S. Ajlouni, Non-bovine milk products as emerging probiotic carriers: recent developments and innovations, Curr. Opin. Food Sci. 22 (2018) 109-114. https://doi.org/10.1016/j.cofs.2018.02.010.

[20]

A. Panghal, S. Janghu, K. Virkar, et al., Potential non-dairy probiotic products-a healthy approach, Food Biosci. 21 (2018) 80-89. https://doi.org/10.1016/j.fbio.2017.12.003.

[21]

M. Chen-Xu, C. Yokose, S.K. Rai, et al., Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the National Health and Nutrition Examination Survey, 2007-2016, Arthritis Rheumatol. 71 (2019) 991-999. https://doi.org/10.1002/art.40807.

[22]

N. Yamada, C. Saito-Iwamoto, M. Nakamura, et al., Lactobacillus gasseri PA-3 uses the purines IMP, inosine and hypoxanthine and reduces their absorption in rats, Microorganisms 5 (2017) 10. https://doi.org/10.3390/microorganisms5010010.

[23]

Z. Wu, J. Wu, P. Cao, et al., Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid, J. Dairy Sci. 100 (2017) 4223-4229. https://doi.org/10.3168/jds.2017-12640.

[24]

H.N. Wang, L. Mei, Y. Deng, et al., Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis, Nutrition 62 (2019) 63-73. https://doi.org/10.1016/j.nut.2018.11.018.

[25]

J.G. LeBlanc, F. Chain, R. Martin, et al., Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria, Microb. Cell. Fact. 16 (2017) 1-10. https://doi.org/10.1186/s12934-017-0691-z.

[26]

I. Rowland, G. Gibson, A. Heinken, et al., Gut microbiota functions: metabolism of nutrients and other food components, Eur. J. Nutr. 57 (2018) 1-24. https://doi.org/10.1007/s00394-017-1445-8.

[27]

Y.W. Kuo, S.H. Hsieh, J.F. Chen, et al., Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats, PeerJ 9 (2021) e11209. https://doi.org/10.7717/peerj.11209.

[28]

H. Kano, N. Yamada, C. Saito, et al., Lactobacillus gasseri PA-3, but not L-gasseri OLL2996, reduces the absorption of purine nucleosides in rats, Nucleosides Nucleotides Nucleic Acids 37 (2018) 353-360. https://doi.org/10.1080/15257770.2018.1469760.

[29]

J.B. Divya, K.K. Varsha, K.M. Nampoothiri, Newly isolated lactic acid bacteria with probiotic features for potential application in food industry, Appl. Biochem. Biotechnol. 167 (2012) 1314-1324. https://doi.org/10.1007/s12010-012-9561-7.

[30]

G.R. Greenberg, Role of folic acid derivatives in purine biosynthesis, Federation Proceedings 13 (1954) 745-759.

[31]

C. Serrano-Amatriain, R. Ledesma-Amaro, R. Lopez-Nicolas, et al., Folic acid production by engineered Ashbya gossypii, Metab. Eng. 38 (2016) 473-482. https://doi.org/10.1016/j.ymben.2016.10.011.

[32]

P.F. Cuevas-Gonzalez, J.E. Aguilar-Toala, H.S. Garcia, et al., Protective effect of the intracellular content from potential probiotic bacteria against oxidative damage induced by acrylamide in human erythrocytes, Probiotics Antimicrob. Proteins 12 (2020) 1459-1470. https://doi.org/10.1007/s12602-020-09636-9.

[33]

M. Chen, X.Y. Lu, C. Lu, et al., Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway, Arthritis Res. Ther. 20 (2018) 1-12. https://doi.org/10.1186/s13075-018-1512-4.

[34]

A. Novikov, Y. Fu, W. Huang, et al., SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1, Am. J. Physiol. Renal Physiol. 316 (2019) F173-F185. https://doi.org/10.1152/ajprenal.00462.2018.

[35]

E. Angelakis, D. Bastelica, A.B. Amara, et al., An evaluation of the effects of Lactobacillus ingluviei on body weight, the intestinal microbiome and metabolism in mice, Microb. Pathog. 52 (2012) 61-68. https://doi.org/10.1016/j.micpath.2011.10.004.

[36]

J. Lu, X. Hou, X. Yuan, et al., Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders, Kidney Int. 93 (2018) 69-80. https://doi.org/10.1016/j.kint.2017.04.031.

[37]

J. Tan, L. Wan, X. Chen, et al., Conjugated linoleic acid ameliorates high fructose-induced hyperuricemia and renal inflammation in rats via NLRP3 inflammasome and TLR4 signaling pathway, Mol. Nutr. Food Res. 63 (2019) 1801402. https://doi.org/10.1002/mnfr.201801402.

[38]

R.J. Chen, M.H. Chen, Y.L. Chen, et al., Evaluating the urate-lowering effects of different microbial fermented extracts in hyperuricemic models accompanied with a safety study, J. Food Drug Anal. 25 (2017) 597-606. https://doi.org/10.1016/j.jfda.2016.07.003.

Food Science and Human Wellness
Pages 1379-1390
Cite this article:
Zhao H, Chen X, Meng F, et al. Ameliorative effect of Lacticaseibacillus rhamnosus Fmb14 from Chinese yogurt on hyperuricemia. Food Science and Human Wellness, 2023, 12(4): 1379-1390. https://doi.org/10.1016/j.fshw.2022.10.031

619

Views

45

Downloads

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 27 November 2021
Revised: 15 December 2021
Accepted: 18 January 2022
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return