AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Gut microbiota axis: potential target of phytochemicals from plant-based foods

Ruyu Shia,b,1Congying Huanga,1Yuan GaobXing LiaChunhong Zhanga,c,d( )Minhui Lia,b,e( )
Baotou Medical College, Baotou 014040, China
Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot 010020, China
Inner Mongolia Key Laboratory of Traditional Chinese Resources, Baotou Medical College, Baotou 014040, China
Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou 014040, China
Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China

1 Authors contribute equally to this article.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Food-microbiota-host interactions provide an overarching framework for understanding the function of the gut microbiota axis. Diet is a major modulator of gut microbiota. Plant-based foods are rich in phytochemicals; therefore, it is essential to assess such foods and elucidate the mechanisms underlying their action. In this review, we summarize the role of gut microbiota in the communication between the gut and the brain, liver, lung, kidney, and joints, as well as the role of the gut microbiota axis in diseases involving these organs. In addition, we assess the effects of phytochemicals from plant-based foods on the gut microbiota axis via different pathways.

References

[1]

J.M. Lankelma, M. Nieuwdorp, W.M. de Vos, et al., The gut microbiota in internal medicine: implications for health and disease, Neth. J. Med. 73(2) (2015) 61-68.

[2]

P. Perez-Pardo, T. Kliest, H.B. Dodiya, et al., The gut-brain axis in Parkinson’s disease: possibilities for food-based therapies, Eur. J. Pharmacol. 817 (2017) 86-95. https://doi.org/10.1016/j.ejphar.2017.05.042.

[3]

H.E. Rassmussen, B.R. Piazza, C.B. Forsyth, et al., Nutrition and gastrointestinal health as modulators of Parkinson’s disease, Springer International Publishing (2014) 213-242. https://doi.org/10.1007/978-3-319-06151-1_11.

[4]

L. Cordain, S.B. Eaton, A. Sebastian, et al., Origins and evolution of the Western diet: health implications for the 21st century, Am. J. Clin. Nutr. 81(2) (2005) 341-354. https://doi.org/10.1093/ajcn.81.2.341.

[5]
T.C. Campbell, T.M. Campbell, The China study: the most comprehensive study of nutrition ever conducted and the startling implications for diet, weight loss and long-term health, Benbella Books: Texas, USA. (2005). https://doi.org/10.1089/acm.2005.11.1117.
[6]

L.L. Jiang, X. Gong, M.Y. Ji, et al., Bioactive compounds from plant-based functional foods: a promising choice for the prevention and management of hyperuricemia, Foods 9(8) (2020) 973. https://doi.org/10.3390/foods9080973.

[7]

T.R. Sampson, S.K. Mazmanian, Control of brain development, function, and behavior by the microbiome, Cell Host Microbe. 17(5) (2015) 565-576. https://doi.org/10.1016/j.chom.2015.04.011.

[8]

E.Y. Hsiao, S.W. McBride, S. Hsien, et al., Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders, Cell 155(7) (2013) 1451-1463. https://doi.org/10.1016/j.cell.2013.11.024.

[9]

J.A. Foster, K.A. McVey Neufeld, Gut-brain axis: how the microbiome influences anxiety and depression, Trends Neurosci. 36(5) (2013) 305-312. https://doi.org/10.1016/j.tins.2013.01.005.

[10]

C. Clemmensen, T.D. Müller, S.C. Woods, et al., Gut-brain cross-talk in metabolic control, Cell 168(5) (2017) 758-774. https://doi.org/10.1016/j.cell.2017.01.025.

[11]

G. Ezra-Nevo, S.F. Henriques, C. Ribeiro, The diet-microbiome tango: how nutrients lead the gut brain axis, Curr. Opin Neurobiol. 62 (2020) 122-132. https://doi.org/10.1016/j.conb.2020.02.005.

[12]

H. Chen, J. Shen, J.Q. Xuan, et al., Plant-based dietary patterns in relation to mortality among older adults in China, Nat. Aging (2022) 1-7. https://doi.org/10.1038/s43587-022-00180-5.

[13]

G.D. Wu, J. Chen, C. Hoffmann, et al., Linking long-term dietary patterns with gut microbial enterotypes, Science 334(6052) (2011) 105-108. https://doi.org/10.1126/science.1208344.

[14]

J.H. Ou, F. Carbonero, E.G. Zoetendal, et al., Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans, Am. J. Clin. Nutr. 98(1) (2013) 111-120. https://doi.org/10.3945/ajcn.112.056689.

[15]

C.R. Martin, V. Osadchiy, A. Kalani, et al., The brain-gut-microbiome axis, Cell. Mol. Gastroenterol. Hepatol. 6(2) (2018) 133-148. https://doi.org/10.1016/j.jcmgh.2018.04.003.

[16]

T. Teratani, Y. Mikami, N. Nakamoto, et al., The liver-brain-gut neural arc maintains the Treg cell niche in the gut, Nature 585(7826) (2020) 591-596. https://doi.org/10.1038/s41586-020-2425-3.

[17]

K.F. Budden, S.L. Gellatly, D.L.A. Wood, et al., Emerging pathogenic links between microbiota and the gut-lung axis, Nat. Rev. Microbiol. 15(1) (2017) 55-63. https://doi.org/10.1038/nrmicro.2016.142.

[18]

T. Yang, E.M. Richards, C.J. Pepine, et al., The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease, Nat. Rev. Nephrol. 14(7) (2018) 442-456. https://doi.org/10.1038/s41581-018-0018-2.

[19]

L.H. Morais, H.L. Schreiber, S.K. Mazmanian, The gut microbiota-brain axis in behaviour and brain disorders, Nat. Rev. Microbiol. 19(4) (2021) 241-255. https://doi.org/10.1038/s41579-020-00460-0.

[20]

B. Bonaz, T. Bazin, S. Pellissier, The vagus nerve at the interface of the microbiota-gut-brain axis, Front. Neurosci. 12 (2018) 49. https://doi.org/10.3389/fnins.2018.00049.

[21]

K. Strimbu, J.A. Tavel, What are biomarkers? Curr. Opin. HIV AIDS. 5(6) (2010) 463-466. https://doi.org/10.1097/COH.0b013e32833ed177.

[22]

L.T. Vu, R. Bowser, Fluid-based biomarkers for amyotrophic lateral sclerosis, Neurotherapeutics 14(1) (2017) 119-134. https://doi.org/10.1007/s13311-016-0503-x.

[23]

G. Livingston, A. Sommerlad, V. Orgeta, et al., Dementia prevention, intervention, and care, Lancet 390(10113) (2017) 2673-2734. https://doi.org/10.1016/S0140-6736(17)31363-6.

[24]

N. Ma, T. He, L.J. Johnston, et al., Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling, Gut Microbes. 11(5) (2020) 1203-1219. https://doi.org/10.1080/19490976.2020.1758008.

[25]

A. Agus, K. Clément, H. Sokol, Gut microbiota-derived metabolites as central regulators in metabolic disorders, Gut 70(6) (2021) 1174-1182. https://doi.org/10.1136/gutjnl-2020-323071.

[26]

F. Angelucci, K. Cechova, J. Amlerova, et al., Antibiotics, gut microbiota, and Alzheimer's disease, J. Neuroinflammation 16(1) (2019) 1-10. https://doi.org/10.1186/s12974-019-1494-4.

[27]

S.M. Collins, M. Surette, P. Bercik, The interplay between the intestinal microbiota and the brain, Nat. Rev. Microbiol. 10(11) (2012) 735-742. https://doi.org/10.1038/nrmicro2876.

[28]

V. Calsolaro, P. Edison, Neuroinflammation in Alzheimer's disease: current evidence and future directions, Alzheimers Dement. 12(6) (2016) 1-14. https://doi.org/10.1016/j.jalz.2016.02.010.

[29]

H. Wekerle, The gut-brain connection: triggering of brain autoimmune disease by commensal gut bacteria, Rheumatology (Oxford) 55(suppl 2) (2016) ii68-ii75. https://doi.org/10.1093/rheumatology/kew353.

[30]

B. Engelhardt, L. Sorokin, The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction, Semin. Immunopathol. 31(4) (2009) 497-511. https://doi.org/10.1007/s00281-009-0177-0.

[31]

J.F. Xu, Z. Nie, L. Shao, Gut microbiota approach—a new strategy to treat Parkinson’s disease, Front. Cell. Infect. Mi. 10 (2020) 570658. https://doi.org/10.3389/fcimb.(2020).570658.

[32]

X.L. Bu, X.Q. Yao, S.S. Jiao, et al., A study on the association between infectious burden and Alzheimer's disease, Eur. J. Neurol. 22(12) (2015) 1519-1525. https://doi.org/10.1111/ene.12477.

[33]

S. Jangi, R. Gandhi, L.M. Cox, et al., Alterations of the human gut microbiome in multiple sclerosis, Nat. Commun. 7 (2016) 12015. https://doi.org/10.1038/ncomms12015.

[34]

H. Tremlett, D.W. Fadrosh, A.A. Faruqi, et al., Gut microbiota in early pediatric multiple sclerosis: a case-control study, Eur. J. Neurol. 23(8) (2016) 1308-1321. https://doi.org/10.1111/ene.13026.

[35]

H.Y. Jiang, Z.X. Ling, Y.H. Zhang, et al., Altered fecal microbiota composition in patients with major depressive disorder, Brain Behav. Immun. 48 (2015) 186-194. https://doi.org/10.1016/j.bbi.2015.03.016.

[36]

A.A. Mohammadi, S. Jazayeri, K. Khosravi-Darani, et al., The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers, Nutr. Neurosci. 19(9) (2016) 387-395. https://doi.org/10.1179/1476830515Y.0000000023.

[37]

X.Y. Wang, G.Q. Sun, T. Feng, et al., Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression, Cell. Res. 29(10) (2019) 787-803. https://doi.org/10.1038/s41422-019-0216-x.

[38]

S. Liu, J.G. Gao, M.Q. Zhu, et al., Gut microbiota and dysbiosis in Alzheimer's disease: implications for pathogenesis and treatment, Mol. Neurobiol. 57(12) (2020) 5026-5043. https://doi.org/10.1007/s12035-020-02073-3.

[39]

X. Hu, T. Wang, F. Jin, Alzheimer's disease and gut microbiota, Sci. China Life Sci. 59(10) (2016) 1006-1023. https://doi.org/10.1007/s11427-016-5083-9.

[40]

B. Jeynes, J. Provias, The case for blood-brain barrier dysfunction in the pathogenesis of Alzheimer's disease, J. Neurosci. Res. 89(1) (2011) 22-28. https://doi.org/10.1002/jnr.22527.

[41]

P. Kesika, N. Suganthy, B.S. Sivamaruthi, et al., Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease, Life Sci. (2021). https://doi.org/10.1016/j.lfs.2020.118627.

[42]

A. Gupta, E.A. Osadchiy, E.A. Mayer, Brain–gut–microbiome interactions in obesity and food addiction, Nat. Rev. Gastro. Hepat. 17(11) (2020) 1-18. https://doi.org/10.1038/s41575-020-0341-5.

[43]

E.A. Mayer, S. Bradesi, L. Chang, et al., Functional GI disorders: from animal models to drug development, Gut 57(3) (2008) 384-404. https://doi.org/10.1136/gut.2006.101675.

[44]

P. Holzer, A. Farzi, Neuropeptides and the microbiota-gut-brain axis, Adv. Exp. Med. Biol. 817 (2014) 195-219. https://doi.org/10.1007/978-1-4939-0897-4_9.

[45]

C.S. Oriach, R.C. Robertson, C. Stanton, et al., Food for thought: the role of nutrition in the microbiota-gut–brain axis, Clin. Nutr. Exp. 6 (2016) 25-38. https://doi.org/10.1016/j.yclnex.2016.01.003.

[46]

H.E. Raybould, Gut chemosensing: interactions between gut endocrine cells and visceral afferents, Auton. Neurosci. 53(1-2) (2010) 41-46. https://doi.org/10.1016/j.autneu.2009.07.007.

[47]

M. Lyte, Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics, Bioessays 33(8) (2011) 574-581. https://doi.org/10.1002/bies.201100024.

[48]

A. Sarkar, S.M. Lehto, S. Harty, et al., Psychobiotics and the manipulation of bacteria-gut-brain signals, Trends Neurosci. 39 (2016) 763-781. https://doi.org/10.1016/j.tins.2016.09.002.

[49]

C. McBerry, R.M.S. Gonzalez, N. Shryock, et al., SOCS2-induced proteasome-dependent TRAF6 degradation: a common anti-inflammatory pathway for control of innate immune responses, PLoS One 7(6) (2012) e38384. https://doi.org/10.1371/journal.pone.0038384.

[50]

A. Albillos, A. de Gottardi, M. Rescigno. The gut-liver axis in liver disease: Pathophysiological basis for therapy, J. Hepatol. 72(3) (2020) 558-577. https://doi.org/10.1016/j.jhep.2019.10.003.

[51]

J.W. Jiang, X.H. Chen, Z.G. Ren, et al., Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis, HBPD INT 18(1) (2019) 19-27. https://doi.org/10.1016/j.hbpd.2018.11.002.

[52]

P. Kubes, C. Jenne, Immune responses in the liver, Annu. Rev. Immunol. (2018) 247-277. https://doi.org/10.1146/annurev-immunol-051116-052415.

[53]

R. Wang, R.Q. Tang, B. Li, et al., Gut microbiome, liver immunology, and liver diseases, Cell. Mol. Immunol. 18(1) (2021) 4-17. https://doi.org/10.1038/s41423-020-00592-6.

[54]

A.B. Lumsden, J.M. Henderson, M.H. Kutner, Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis, Hepatology 8(2) (1988) 232-236. https://doi.org/10.1002/hep.1840080207.

[55]

V. Racanelli, B. Rehermann, The liver as an immunological organ, Hepatology 43(2 Suppl 1) (2006) 54-62. https://doi.org/10.1002/hep.21060.

[56]

S.L. Friedman, B.A. Neuschwander-Tetri, M. Rinella, et al., Mechanisms of NAFLD development and therapeutic strategies, Nat. Med. 24(7) (2018) 908-922. https://doi.org/10.1038/s41591-018-0104-9.

[57]

S. Schuster, D. Cabrera, M. Arrese, et al., Triggering and resolution of inflammation in NASH, Nat. Rev. Gastroenterol. Hepatol. 15(6) (2018) 349-364. https://doi.org/10.1038/s41575-018-0009-6.

[58]

A. Beyaz Coşkun, A.G.Sa.ğdiçoğlu Celep, Therapeutic modulation methods of gut microbiota and gut-liver axis, Crit. Rev. Food Sci. Nutr. 62(23) (2021) 6505-6515. https://doi.org/10.1080/10408398.2021.1902263.

[59]

O. Koren, A. Spor, J. Felin, et al., Human oral, gut, and plaque microbiota in patients with atherosclerosis, Proc. Natl. Acad. Sci. U.S.A. 108(Suppl 1) (2011) 459204598. https://doi.org/10.1073/pnas.1011383107.

[60]

D.L. Chen, Y.R. Guo, L.K. Qi, et al., Metabolic regulation of Ganoderma lucidum extracts in high sugar and fat diet-induced obese mice by regulating the gut-brain axis, J. Funct. Foods 65 (2020) 103639. https://doi.org/10.1016/j.jff.2019.103639.

[61]

H. Gao, R.J. Song, Y.Z. Li, et al., Effects of oat fiber intervention on cognitive behavior in LDLR-/- mice modeling atherosclerosis by targeting the microbiome-gut-brain axis, J. Agric. Food Chem. 68(49) (2020) 14480-14491. https://doi.org/10.1021/acs.jafc.0c05677

[62]

E.L. Chatelier, T. Nielsen, J.J. Qin, et al., Richness of human gut microbiome correlates with metabolic markers, Nature 500(7464) (2013) 541-546. https://doi.org/10.1038/nature12506.

[63]

Y.O. Jang, O.H. Kim, S.J. Kim, et al., High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism, Sci. Rep. 11(1) (2021) 7008. https://doi.org/10.1038/s41598-021-86404-x.

[64]

T.J. Hartman, P.S. Albert, Z.Y. Zhang, et al., Consumption of a legume-enriched, low-glycemic index diet is associated with biomarkers of insulin resistance and inflammation among men at risk for colorectal cancer, J. Nutr. 140(1) (2010) 60-67. https://doi.org/10.3945/jn.109.114249.

[65]

K.F. Budden, S.L. Gellatly, D.L.A. Wood, et al., Emerging pathogenic links between microbiota and the gut-lung axis, Nat. Rev. Microbiol. 15(1) (2017) 55-63. https://doi.org/10.1038/nrmicro.2016.142

[66]

B.J. Marsland, A. Trompette, E.S. Gollwitzer, The gut-lung axis in respiratory disease, Ann. Am. Thorac. Soc. 12(Suppl 2) (2015) 150-156. https://doi.org/10.1513/AnnalsATS.201503-133AW.

[67]

L.N. Segal, J.C. Clemente, J.C.J. Tsay, et al., Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype, Nat. Microbiol. 1 (2016) 16031. https://doi.org/10.1038/nmicrobiol.2016.31.

[68]

J.W. Mims, Asthma: definitions and pathophysiology, Int. Forum. Allergy Rhinol. 5(Suppl 1) (2015) 2-6. https://doi.org/10.1002/alr.21609.

[69]

K.F. Rabe, H. Watz, Chronic obstructive pulmonary disease, Lancet 389(10082) (2017) 1931-1940. https://doi.org/10.1016/S0140-6736(17)31222-9.

[70]

M. Sockrider, L. Fussner, What is asthma? Am. J. Respir. Crit. Care Med. 202(9) (2020) P25-P26. https://doi.org/10.1164/rccm.2029P25.

[71]

W. Barcik, R.C.T. Boutin, M. Sokolowska, et al., The role of lung and gut microbiota in the pathology of asthma, Immunity 52(2) (2020) 241-255. https://doi.org/10.1016/j.immuni.2020.01.007.

[72]

B. Pugin, W. Barcik, P. Westermann, et al., A wide diversity of bacteria from the human gut produces and degrades biogenic amines, Microb. Ecol. Health Dis. 28(1) (2017). https://doi.org/10.1080/16512235.2017.1353881.

[73]

S.R. Levan, K.A. Stamnes, D.L. Lin, et al., Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance, Nat. Microbiol. 4(11) (2019) 1851-1861. https://doi.org/10.1038/s41564-019-0498-2.

[74]

H.C. Lai, T.L. Lin, T.W. Chen, et al., Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide, Gut 71(2) (2022) 309-321. https://doi.org/10.1136/gutjnl-2020-322599.

[75]

A. Trompette, E.S. Gollwitzer, K. Yadava, et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis, Nat. Med. 20(2) (2014) 159-166. https://doi.org/10.1038/nm.3444.

[76]

A.N. Thorburn, C.I. McKenzie, S. Shen, et al., Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites, Nat. Commun. 6 (2015) 7320. https://doi.org/10.1038/ncomms8320.

[77]

J.M. Craig, Atopic dermatitis and the intestinal microbiota in humans and dogs, Vet. Med. Sci. 2(2) (2016) 95-105. https://doi.org/10.1002/vms3.24.

[78]

M.R. Sutherland, Introduction to a special issue on kidney development and disease, Anat. Rec. (Hoboken). 303(10) (2020) 2507-2510. https://doi.org/10.1002/ar.24467.

[79]

R.P. Forster, Kidney, water, and electrolytes, Annu. Rev. Physiol. 27 (1965) 183-232. https://doi.org/10.1146/annurev.ph.27.030165.001151.

[80]

M. Hatch, R.W. Freel, N.D. Vaziri, Intestinal excretion of oxalate in chronic renal failure, J. Am. Soc. Nephrol. 5(6) (1994) 1339-1343. https://doi.org/10.1681/ASN.V561339.

[81]

K. Andersen, M.S. Kesper, J.A. Marschner, et al., Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation, J. Am. Soc. Nephrol. 28(1) (2017) 76-83. https://doi.org/10.1681/ASN.2015111285.

[82]

N.D. Vaziri, J. Wong, M. Pahl, et al., Chronic kidney disease alters intestinal microbial flora, Kidney Int. 83(2) (2013) 308-315. https://doi.org/10.1038/ki.2012.345.

[83]

J. Wong, Y.M. Piceno, T.Z. DeSantis, et al., Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD, Am. J. Nephrol. 39(3) (2014) 230-237. https://doi.org/10.1159/000360010.

[84]

N.D. Vaziri, J. Yuan, K. Norris, Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease, Am. J. Nephrol. 37(1) (2013) 1-6. https://doi.org/10.1159/000345969.

[85]

G.P. Hobby, O. Karaduta, G.F. Dusio, et al., Chronic kidney disease and the gut microbiome, Am. J. Physiol. Renal. Physiol. 316(6) (2019) F1211-F1217. https://doi.org/10.1152/ajprenal.00298.2018.

[86]

J.B. Ewaschuk, H. Diaz, L. Meddings, et al., Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function, Am. J. Physiol. Gastrointest. Liver Physiol. 295(5) (2008) G1025-G1034. https://doi.org/10.1152/ajpgi.90227.2008.

[87]

C. Plata, C. Cruz, L.G. Cervantes, et al., The gut microbiota and its relationship with chronic kidney disease, Int. Urol. Nephrol. 51(12) (2019) 2209-2226. https://doi.org/10.1007/s11255-019-02291-2.

[88]

R.J.F. Felizardo, I.K.M. Watanabe, P. Dardi, et al., The interplay among gut microbiota, hypertension and kidney diseases: the role of short-chain fatty acids, Pharmacol. Res. 141 (2019) 366-377. https://doi.org/10.1016/j.phrs.2019.01.019.

[89]

B. Meijers, R. Farré, S. Dejongh, et al., Intestinal barrier function in chronic kidney disease, Toxins (Basel) 10(7) (2018) 298. https://doi.org/10.3390/toxins10070298.

[90]

M. Mydlík, K. Derzsiová, Oxalic acid as a uremic toxin, J. Ren. Nutr. 18(1) (2008) 33-39. https://doi.org/10.1053/j.jrn.2007.10.008.

[91]

M. Bossola, M. Sanguinetti, D. Scribano, et al., Circulating bacterial-derived DNA fragments and markers of inflammation in chronic hemodialysis patients, Clin. J. Am. Soc. Nephrol. 4(2) (2009) 379-385. https://doi.org/10.2215/CJN.03490708.

[92]

H.N. Lima, N.L. Cabral, J. Franklin, et al., Age dependent impact of estimated glomerular filtration rate on long-term survival after ischaemic stroke, Nephrology (Carlton). 17(8) (2012) 725-732. https://doi.org/10.1111/j.1440-1797.2012.01643.x.

[93]

K.H. Shi, F.Q. Wang, H.L. Jiang, et al., Gut bacterial translocation may aggravate microinflammation in hemodialysis patients, Dig. Dis. Sci. 59(9) (2014) 2109-2117. https://doi.org/10.1007/s10620-014-3202-7.

[94]

M. Hatch, N.D. Vaziri, Enhanced enteric excretion of urate in rats with chronic renal failure, Clin. Sci. (Lond). 86(5) (1994) 511-516. https://doi.org/10.1042/cs0860511.

[95]

P. Evenepoel, R. Poesen, B. Meijers, The gut-kidney axis, Pediatr. Nephrol. 32(11) (2014) 2005-2014. https://doi.org/10.1007/s00467-016-3527-x.

[96]

M.M. Santisteban, Y.F. Qi, J. Zubcevic, et al., Hypertension-linked pathophysiological alterations in the gut, Circ. Res. 120(2) (2017) 312-323. https://doi.org/10.1161/CIRCRESAHA.116.309006.

[97]

D.G. Harrison, The mosaic theory revisited: common molecular mechanisms coordinating diverse organ and cellular events in hypertension, J. Am. Soc. Hypertens. 7(1) (2013) 68-74. https://doi.org/10.1016/j.jash.2012.11.007.

[98]

P.A. Aronov, F.J. Luo, N.S. Plummer, et al., Colonic contribution to uremic solutes, J. Am. Soc. Nephrol. 22(9) (2011) 1769-1776. https://doi.org/10.1681/ASN.2010121220.

[99]

A. Ramezani, D.S. Raj, The gut microbiome, kidney disease, and targeted interventions, J. Am. Soc. Nephrol. 25(4) (2014) 657-670. https://doi.org/10.1681/ASN.2013080905.

[100]

C.J. Lin, H.H. Chen, C.F. Pan, et al., p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease, J. Clin. Lab. Anal. 25(3) (2011) 191-197. https://doi.org/10.1002/jcla.20456.

[101]

S. Adesso, T. Magnus, S. Cuzzocrea, et al., Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: interaction between astrocytes and microglia, Front. Pharmacol. 8 (2017) 370. https://doi.org/10.3389/fphar.2017.00370.

[102]

E. Mishima, S. Fukuda, C. Mukawa, et al., Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach, Kidney Int. 92(3) (2017) 634-645. https://doi.org/10.1016/j.kint.2017.02.011.

[103]

M. Lyte, Microbial endocrinology: the microbiota-gut-brain axis in health and disease preface, Adv. Exp. Med. Biol. 817 (2014). https://doi.org/10.1007/978-1-4939-0897-4_1.

[104]

S. Al Khodor, I.F. Shatat, Gut microbiome and kidney disease: a bidirectional relationship, Pediatr. Nephrol. 32(6) (2017) 921-931. https://doi.org/10.1007/s00467-016-3392-7.

[105]

B. Afsar, A.A. Sag, C.E. Yalcin, et al., Brain-kidney cross-talk: definition and emerging evidence, Eur. J. Intern. Med. 36 (2016) 7-12. https://doi.org/10.1016/j.ejim.2016.07.032.

[106]

A. Ramezani, Z.A. Massy, B. Meijers, et al., Role of the gut microbiome in uremia: a potential therapeutic target, Am. J. Kidney Dis. 67(3) (2015) 483-498. https://doi.org/10.1053/j.ajkd.2015.09.027.

[107]

A. Sircana, F. De Michieli, R. Parente, et al., Gut microbiota, hypertension and chronic kidney disease: recent advances, Pharmacol. Res. 144 (2019) 390-408. https://doi.org/10.1016/j.phrs.2018.01.013.

[108]

A.Ticinesi, A. Nouvenne, T. Meschi, Gut microbiome and kidney stone disease: not just an Oxalobacter story, Kidney Int. 96(1) (2019) 25-27. https://doi.org/10.1016/j.kint.2019.03.020.

[109]

D.J. Durgan, B.P. Ganesh, J.L. Cope, et al., Role of the gut microbiome in obstructive sleep apnea-induced hypertension, Hypertension 67(2) (2016) 469-474. https://doi.org/10.1161/HYPERTENSIONAHA.115.06672.

[110]

T. Sobko, L. Huang, T. Midtvedt, et al., Generation of NO by probiotic bacteria in the gastrointestinal tract, Free Radic. Biol. Med. 41(6) (2006) 985-991. https://doi.org/10.1016/j.freeradbiomed.2006.06.020.

[111]

J.D. Taurog, J.A. Richardson, J.T. Croft, et al., The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats, J. Exp. Med. 180(6) (1994) 2359-2364. https://doi.org/10.1084/jem.180.6.2359.

[112]

J. Li, F.Q. Zhao, Y.D. Wang, et al., Gut microbiota dysbiosis contributes to the development of hypertension, Microbiome 5(1) (2017) 14. https://doi.org/10.1186/s40168-016-0222-x.

[113]

T. Khoury, K. Tzukert, R. Abel, et al., The gut-kidney axis in chronic renal failure: a new potential target for therapy, Hemodial. Int. 21(3) (2017) 323-334. https://doi.org/10.1111/hdi.12486.

[114]

M.A. Qureshi, J.D. Garlich, W.M. Jr Hagler, et al., Fusarium proliferatum culture material alters several production and immune performance parameters in white leghorn chickens, Immunopharmacol. Immunotoxicol. 17(4) (1995) 791-804. https://doi.org/10.3109/08923979509037197.

[115]

E. Jiménez, M.L. Marín, R. Martín, et al., Is meconium from healthy newborns actually sterile? Res. Microbiol. 159(3) (2007) 187-193. https://doi.org/10.1016/j.resmic.2007.12.007.

[116]

V. Martín, A. Maldonado-Barragán, L. Moles, et al., Sharing of bacterial strains between breast milk and infant feces, J. Hum. Lact. 28(1) (2012) 36-44. https://doi.org/10.1177/0890334411424729.

[117]

F.V. Mortensen, H. Nielsen, C. Aalkjaer, et al., Short chain fatty acids relax isolated resistance arteries from the human ileum by a mechanism dependent on anion-exchange, Pharmacol. Toxicol. 75(3/4) (1994) 181-185. https://doi.org/10.1111/j.1600-0773.1994.tb00344.x.

[118]

F. Guarner, J.R. Malagelada, Gut flora in health and disease, Lancet 361(9356) (2003) 512-519. https://doi.org/10.1016/S0140-6736(03)12489-0.

[119]

N.W. Tai, J. Peng, F.Q. Liu, et al., Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice, J. Exp. Med. 213(10) (2016) 2129-2146. https://doi.org/10.1084/jem.20160526.

[120]

J.B. Cole, J.C. Florez, Genetics of diabetes mellitus and diabetes complications, Nat. Rev. Nephrol. 16(7) (2020) 377-390. https://doi.org/10.1038/s41581-020-0278-5.

[121]

T. Sobko, L. Huang, T. Midtvedt, et al., Generation of NO by probiotic bacteria in the gastrointestinal tract, Free Radic. Biol. Med. 41(6) (2006) 985-991. https://doi.org/10.1016/j.freeradbiomed.2006.06.020.

[122]

J.A. Bravo, P. Forsythe, M.V. Chew, et al., Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve, Proc. Natl. Acad. Sci. U.S.A. 108(38) (2011) 16050-16055. https://doi.org/10.1073/pnas.1102999108.

[123]

D.M. Moynes, G.H. Lucas, M.J. Beyak, et al., Effects of inflammation on the innervation of the colon, Toxicol. Pathol. 42(1) (2014) 111-117. https://doi.org/10.1177/0192623313505929.

[124]

L. Wen, F.S. Wong, Dietary short-chain fatty acids protect against type 1 diabetes, Nat. Immunol. 18(5) (2017) 484-486. https://doi.org/10.1038/ni.3730.

[125]

G.J. Shi, C. Sun, W.Q. Gu, et al., Free fatty acid receptor 2, a candidate target for type 1 diabetes, induces cell apoptosis through ERK signaling, J. Mol. Endocrinol. 53(3) (2014) 367-380. https://doi.org/10.1530/JME-14-0065.

[126]

B. Finlayson, Physicochemical aspects of urolithiasis, Kidney Int. 13(5) (1978) 344-360. https://doi.org/10.1038/ki.1978.53.

[127]

S.R. Khan, M.S. Pearle, W.G. Robertson, Kidney stones, Nat. Rev. Dis. Primers. (2016). https://doi.org/10.1038/nrdp.2016.8.

[128]

A. Ticinesi, A. Nouvenne, G. Chiussi, et al., Calcium oxalate nephrolithiasis and gut microbiota: not just a gut-kidney axis. A nutritional perspective, Nutrients 12(2) (2020) 548. https://doi.org/10.3390/nu12020548.

[129]

M. Kanbay, E.M. Onal, B. Afsar, et al., The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus, Int. Urol. Nephrol. 50(8) (2018) 1453-1466. https://doi.org/10.1007/s11255-018-1873-2.

[130]

J.D. Taurog, J.A. Richardson, J.T. Croft, et al., The germ-free state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats, J. Exp. Med. 180 (1994) 2359-2364. https://doi.org/10.1084/jem.180.6.2359.

[131]

S.N. Lichtman, J. Wang, R.B. Sartor, et al., Reactivation of arthritis induced by small bowel bacterial overgrowth in rats: role of cytokines, bacteria, and bacterial polymers, Infect. Immun. 63(6) (1995) 2295-2301. https://doi.org/10.1128/iai.63.6.2295-2301.1995.

[132]

Z.Y. Huang, T. Stabler, F.X. Pei, et al., Both systemic and local lipopolysaccharide (LPS) burden are associated with knee OA severity and inflammation, Osteoarthritis Cartilage 24(10) (2016) 1769-1775. https://doi.org/10.1016/j.joca.2016.05.008.

[133]

Z.G. Huang, V.B. Kraus, Does lipopolysaccharide-mediated inflammation have a role in OA? Nat. Rev. Rheumatol. 12(2) (2016) 123-129. https://doi.org/10.1038/nrrheum.2015.158.

[134]

C.M. Dunn, C. Velasco, A. Rivas, et al., Identification of cartilage microbial DNA signatures and associations with knee and hip osteoarthritis, Arthritis Rheumatol. 72(7) (2020) 1111-1122. https://doi.org/10.1002/art.41210.

[135]

I.B. McInnes, G. Schett, The pathogenesis of rheumatoid arthritis, N. Engl. J. Med. 365(23) (2011) 2205-2219. https://doi.org/10.1056/NEJMra1004965.

[136]

D.M. Lee, M.E. Weinblatt, Rheumatoid arthritis, Lancet 358(9285) (2001) 903-911. https://doi.org/10.1016/S0140-6736(01)06075-5.

[137]

D.L. Scott, F. Wolfe, T.W. Huizinga, Rheumatoid arthritis, Lancet 376(9746) (2010) 1094-1108. https://doi.org/10.1016/S0140-6736(10)60826-4.

[138]

L. Sköldstam, L. Hagfors, G. Johansson, An experimental study of a Mediterranean diet intervention for patients with rheumatoid arthritis, Ann. Rheum. Dis. 62(3) (2003) 208-214. https://doi.org/10.1136/ard.62.3.208.

[139]

J. Kjeldsen-Kragh, M. Haugen, C.F. Borchgrevink, et al., Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis, Lancet 338(8772) (1991) 899-902. https://doi.org/10.1016/0140-6736(91)91770-u.

[140]

E. Chun, S. Lavoie, D. Fonseca-Pereira, et al., Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity, Immunity 51(5) (2019) 871-884. https://doi.org/10.1016/j.immuni.2019.09.014.

[141]

P.M. Smith, M.R. Howitt, N. Panikov, et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science 341(6145) (2013) 569-573. https://doi.org/10.1126/science.1241165.

[142]

N. Tajik, M. Frech, O. Schulz, et al., Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis, Nat. Commun. 11(1) (2020) 1995. https://doi.org/10.1038/s41467-020-15831-7.

[143]

F. Teng, C.N. Klinger, K.M. Felix, et al., Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer's patch T follicular helper cells, Immunity 44(4) (2016) 875-888. https://doi.org/10.1016/j.immuni.2016.03.013.

[144]

E. Pennisi, Evidence mounts that gut bacteria can influence mood, prevent depression, Science (2019). https://doi.org/10.1126/science.aaw9039.

[145]

Y.X. Liu, L. Zhang, X.Q. Wang, et al., Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression, Clin. Gastroenterol. Hepatol. 14(11) (2016) 1602-1611. https://doi.org/10.1016/j.cgh.2016.05.033.

[146]

M.S. Cirstea, A.C. Yu, E. Golz, et al., Microbiota composition and metabolism are associated with gut function in Parkinson's disease, Mov. Disord. 35(7) (2020) 1208-1217. https://doi.org/10.1002/mds.28052.

[147]

Z.D. Wallen, M. Appah, M.N. Dean, et al., Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens, NPJ Parkinsons Dis. 6 (2020) 11. https://doi.org/10.1038/s41531-020-0112-6.

[148]

S. Lang, B. Fairfied, B. Gao, et al., Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients, Gut Microbes. 12(1) (2020) 1785251. https://doi.org/10.1080/19490976.2020.1785251.

[149]

Y. Duan, C. Llorente, S. Lang, et al., Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease, Nature 575(7783) (2019) 505-511. https://doi.org/10.1038/s41586-019-1742-x.

[150]

C. Grander, T.E. Adolph, V. Wieser, et al., Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease, Gut 67(5) (2018) 891-901. https://doi.org/10.1136/gutjnl-2016-313432.

[151]

R. Loomba, V. Seguritan, W. Li, et al., Gut microbiome-based metagenomic signature for noninvasive detection of advanced fibrosis in human nonalcoholic fatty liver disease, Cell. Metab. 25(5) (2017) 1054-1062. https://doi.org/10.1016/j.cmet.2017.04.001.

[152]

S. Lang, M. Demir, A. Martin, et al., Intestinal virome signature associated with severity of nonalcoholic fatty liver disease, Gastroenterology 159(5) (2020) 1839-1852. https://doi.org/10.1053/j.gastro.2020.07.005.

[153]

L. Zhu, S.S. Baker, C. Gill, et al., Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH, Hepatology 57(2) (2013) 601-609. https://doi.org/10.1002/hep.26093.

[154]

M. Hilty, C. Burke, H. Pedro, et al., Disordered microbial communities in asthmatic airways, PLoS One 5(1) (2010) e8578. https://doi.org/10.1371/journal.pone.0008578.

[155]

M. Kalliomäki, P. Kirjavainen, E. Eerola, et al., Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing, J. Allergy Clin. Immunol. 107(1) (2001) 129-134. https://doi.org/10.1067/mai.2001.111237.

[156]

M. Kolak, F. Karpati, H.J. Monstein, et al., Molecular typing of the bacterial flora in sputum of cystic fibrosis patients, Int. J. Med. Microbiol. 293(4) (2003) 309-317. https://doi.org/10.1078/1438-4221-00265.

[157]

E. Bruzzese, M.L. Callegari, V. Raia, et al., Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial, PLoS One 9(2) (2014) e87796. https://doi.org/10.1371/journal.pone.0087796.

[158]

G.B. Rogers, C.J. van der Gast, D.J. Serisier, Predominant pathogen competition and core microbiota divergence in chronic airway infection, ISME J. 9(1) (2015) 217-225. https://doi.org/10.1038/ismej.2014.124.

[159]

W.K. Jubair, J.D. Hendrickson, E.L. Severs, et al., Modulation of inflammatory arthritis in mice by gut microbiota through mucosal inflammation and autoantibody generation, Arthritis Rheumatol. 70(8) (2018) 1220-1233. https://doi.org/10.1002/art.40490.

[160]

D. Alpizar-Rodriguez, T.R. Lesker, A. Gronow, et al., Prevotella copri in individuals at risk for rheumatoid arthritis, Ann. Rheum. Dis. 78(5) (2019) 590-593. https://doi.org/10.1136/annrheumdis-2018-214514.

[161]

H.I. Chiang, J.R. Li, C.C. Liu, et al., An association of gut microbiota with different phenotypes in chinese patients with rheumatoid arthritis, J. Clin. Med. 8(11) (2019) 1770. https://doi.org/10.3390/jcm8111770.

[162]

D.O. Kennedy, E.L. Wightman, Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function, Adv. Nutr. 2(1) (2011) 32-50. https://doi.org/10.3945/an.110.000117.

[163]

F. Shahidi, Nutraceuticals and functional foods: whole versus processed foods, Trends Food Sci. Technol. 20(9) (2009) 376-387. https://doi.org/10.1016/j.tifs.2008.08.004

[164]

E.M. Alissa, G.A. Ferns, Functional foods and nutraceuticals in the primary prevention of cardiovascular diseases, J. Nutr. Metab. (2012) 569486. https://doi.org/10.1155/2012/569486.

[165]

X. Gong, M.Y. Ji, C.H. Zhang, et al., Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China, Crit. Rev. Food Sci. Nutr. 60(14) (2020) 2303-2326. https://doi.org/10.1080/10408398.2019.1634517.

[166]

J.J. Carrero, A. González-Ortiz, C.M. Avesani, et al., Plant-based diets to manage the risks and complications of chronic kidney disease, Nat. Rev. Nephrol. 16(9) (2020) 525-542. https://doi.org/10.1038/s41581-020-0297-2.

[167]

E. Toledo, J. Salas-Salvadó, C. Donat-Vargas, et al., Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: a randomized clinical trial, JAMA Intern. Med. 175(11) (2015) 1752-1760. https://doi.org/10.1001/jamainternmed.2015.4838.

[168]

A.W.C. Man, N. Xia, A. Daiber, et al., The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols, Br. J. Pharmacol. 177(6) (2020) 1278-1293. https://doi.org/10.1111/bph.14850.

[169]

E.K. Williams, R.B. Chang, D.E. Strochlic, et al., Sensory neurons that detect stretch and nutrients in the digestive system, Cell 166(1) (2016) 209-221. https://doi.org/10.1016/j.cell.2016.05.011.

[170]

K.D. Crew, P. Brown, H. Greenlee, et al., Phase IB randomized, double-blinded, placebo-controlled, dose escalation study of polyphenon E in women with hormone receptor-negative breast cancer, Cancer Prev. Res. (Phila). 5(9) (2012) 1144-1154. https://doi.org/10.1158/1940-6207.CAPR-12-0117.

[171]

M.J. Amiot, C. Riva, A. Vinet, Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review, Obes. Rev. 17(7) (2016) 573-586. https://doi.org/10.1111/obr.12409.

[172]

D. Pantano, I. Luccarini, P. Nardiello, et al., Oleuropein aglycone and polyphenols from olive mill waste water ameliorate cognitive deficits and neuropathology, Br. J. Clin. Pharmacol. 83(1) (2017) 54-62. https://doi.org/10.1111/bcp.12993.

[173]

R.H. Liu, Health-promoting components of fruits and vegetables in the diet, Adv. Nutr. 4(3) (2013) 384S-392S. https://doi.org/10.3945/an.112.003517.

[174]

A. Kapinova, P. Stefanicka, P. Kubatka, et al., Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research, Biomed. Pharmacother. (2017) 1465-1477. https://doi.org/10.1016/j.biopha.2017.11.134.

[175]

M. Sharifi-Rad, C. Lankatillake, D.A. Dias, et al., Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics, J. Clin. Med. 9(4) (2020) 1061. https://doi.org/10.3390/jcm9041061.

[176]

K. Kawabata, Y. Yoshioka, J. Terao, Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols, Molecules (Basel, Switzerland) 24(2) (2019) 370. https://doi.org/10.3390/molecules24020370.

[177]

E. Brglez Mojzer, M. Knez Hrnčič, M. Škerget, et al., Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects, Molecules (Basel, Switzerland) 21(7) (2016) 901. https://doi.org/10.3390/molecules21070901.

[178]

V. Neveu, J. Perez-Jiménez, F. Vos. et al., Phenol-explorer: an online comprehensive database on polyphenol contents in foods, Database (Oxford) (2010). https://doi.org/10.1093/database/bap024.

[179]

C. Manach, A. Scalbert, C. Morand, et al., Polyphenols: food sources and bioavailability, Am. J. Clin. Nutr. 79(5) (2004) 727-747. https://doi.org/10.1093/ajcn/79.5.727.

[180]

Y. Zhou, Y. Li, T. Zhou, et al., Dietary natural products for prevention and treatment of liver cancer, Nutrients 8(3) (2016) 156. https://doi.org/10.3390/nu8030156.

[181]

K.B. Pandey, S.I. Rizvi, Plant polyphenols as dietary antioxidants in human health and disease, Oxid. Med. Cell. Longev. 2(5) (2009) 270-278. https://doi.org/10.4161/oxim.2.5.9498.

[182]

I.C.W. Arts, P.C.H. Hollman, Polyphenols and disease risk in epidemiologic studies, Am. J. Clin. Nutr. 81(1 Suppl) (2005) 317S-325S. https://doi.org/10.1093/ajcn/81.1.

[183]

K.V. Sandhu, E. Sherwin, H. Schellekens, et al., Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry, Transl. Res. 179 (2017) 223-244. https://doi.org/10.1016/j.trsl.2016.10.002.

[184]

D.O. Kennedy, Polyphenols and the human brain: plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits, Adv. Nutr. 5(5) (2014) 515-533. https://doi.org/10.3945/an.114.006320.

[185]

J.P.E. Spencer, Flavonoids and brain health: multiple effects underpinned by common mechanisms, Genes Nutr. 4(4) (2009) 243-250. https://doi.org/10.1007/s12263-009-0136-3.

[186]

D. Serra, L.M. Almeida, T.C.P. Dinis, Dietary polyphenols: a novel strategy to modulate microbiota-gut-brain axis, Trends Food Sci. Technol. 78 (2018) 224-233. https://doi.org/10.1016/j.tifs.2018.06.007.

[187]

D. Serra, L.M. Almeida, T.C.P. Dinis, Dietary polyphenols: a novel strategy to modulate microbiota-gut-brain axis, Trends Food Sci. Technol. 78 (2018) 224-233. https://doi.org/10.1016/j.tifs.2018.06.007

[188]

J.S. Jin, M. Hattori, Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans, J. Agric. Food Chem. 57(16) (2009) 7537-7542. https://doi.org/10.1021/jf900902p.

[189]

Y. Xu, Z.C. Wang, W.T. You, et al., Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system, Eur. Neuropsychopharmacol. 20(6) (2010) 405-413. https://doi.org/10.1016/j.euroneuro.2010.02.013

[190]

Y.C. Yu, J. Li, M. Zhang, et al., Resveratrol improves brain-gut axis by regulation of 5-HT-dependent signaling in the rat model of irritable bowel syndrome, Front. Cell. Neurosci. 13 (2019) 30. https://doi.org/10.3389/fncel.2019.00030

[191]

P. Enck, Q. Aziz, G. Barbara, et al., Irritable bowel syndrome, Nat. Rev. Dis. Primers. 2 (2016) 16014. https://doi.org/10.1038/nrdp.2016.14

[192]

P.P., Jia, M. Junaid, P.P., Wen, et al. Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: a special reference to zebrafish, Environ. Pollut. (2021) https://doi.org/10.1016/j.envpol.2021.116925

[193]

C.G. Fraga, M. Galleano, S.V. Verstraeten, et al., Basic biochemical mechanisms behind the health benefits of polyphenols, Mol. Aspects Med. 31(6) (2010) 435-445. https://doi.org/10.1016/j.mam.2010.09.006.

[194]

M. Cosentino, F. Marino, R.C. Maio, et al., Immunomodulatory activity of the lignan 7-hydroxymatairesinol potassium acetate (HMR/lignanTM) extracted from the heartwood of Norway spruce (Picea abies), Int. Immunopharmacol. 10(3) (2010) 339-343. https://doi.org/10.1016/j.intimp.2009.12.005.

[195]

C. Giuliano, F. Siani, L. Mus, et al., Neuroprotective effects of lignan 7-hydroxymatairesinol (HMR/lignan) in a rodent model of Parkinson's disease, Nutrition 69 (2020) 110494. https://doi.org/10.1016/j.nut.2019.04.006.

[196]

S. Attri, K. Sharma, P. Raigond, et al., Colonic fermentation of polyphenolics from sea buckthorn (Hippophae rhamnoides) berries: assessment of effects on microbial diversity by principal component analysis, Food Res. Int. 105 (2018) 324-332. https://doi.org/10.1016/j.foodres.2017.11.032.

[197]

D.O. Kennedy, A.B. Scholey, The psychopharmacology of European herbs with cognition-enhancing properties, Curr. Pharm. Des. 12(35) (2006) 4613-4623. https://doi.org/10.2174/138161206779010387.

[198]

G.M. Shashidhar, P. Giridhar, B. Manohar, Functional polysaccharides from medicinal mushroom Cordyceps sinensis as a potent food supplement: extraction, characterization and therapeutic potentials – a systematic review, Rsc. Advances. 5 (2015) 16050-16066. https://doi.org/10.1039/c4ra13539c.

[199]

P. Zeng, J. Li, Y. Chen, et al., The structures and biological functions of polysaccharides from traditional Chinese herbs, Prog. Mol. Biol. Transl. Sci. 163 (2019) 423-444. https://doi.org/10.1016/bs.pmbts.2019.03.003.

[200]
W.B. Yao, Biochemistry, 7th edition [M]. People's Medical Publishing House. (2011)
[201]

S.Z. Liu, W.G. Zhou, Y.W. Jian, et al., Research advance on biological activity and structure-activity relationships of bioactive polysaccharide, Food Res. Dev. 38 (2017) 211-218.

[202]

C. Wu, J.F. Shan, J.C. Feng, et al., Effects of dietary radix rehmanniae preparata polysaccharides on the digestive enzymes, morphology, microbial communities and mucosal barrier function of the intestine of Luciobarbus capito, Aquac. Res. (2020). https://doi.org/10.1111/are.14448.

[203]

N. Dong, X.R. Li, C.Y. Xue, et al., Astragalus polysaccharides attenuated inflammation and balanced the gut microflora in mice challenged with Salmonella typhimurium, Int. Immunopharmacol. 74 (2019) 105681. https://doi.org/10.1016/j.intimp.2019.105681.

[204]

H. Zeng, L.L. Huang, L.S. Zhou, et al., A galactoglucan isolated from of Cistanche deserticola Y. C. Ma. and its bioactivity on intestinal bacteria strains, Carbohydr. Polym. 223 (2019) 115038. https://doi.org/10.1016/j.carbpol.2019.115038.

[205]

S. Ahmadi, R. Nagpal, S. Wang, et al., Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome-gut-brain axis modulation, J. Nutr. Biochem. 67 (2019) 1-13. https://doi.org/10.1016/j.jnutbio.2019.01.011.

[206]

T.X. Yan, T.T. Nian, Z.Z. Liao, et al., Antidepressant effects of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) by anti-inflammation and rebalancing the gut microbiota, Int. J. Biol. Macromol. 144 (2020) 427-440. https://doi.org/10.1016/j.ijbiomac.2019.12.138.

[207]

C. El-Baba, A. Baassiri, G. Kiriako, et al., Terpenoids' anti-cancer effects: focus on autophagy, Apoptosis 26(9/10) (2021) 491-511. https://doi.org/10.1007/s10495-021-01684-y.

[208]

M.E. Bergman, B. Davis, M.A. Phillips, Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action, Molecules 24(21) (2019) 3961. https://doi.org/10.3390/molecules24213961.

[209]

T. Moses, J. Pollier, J.M. Thevelein, et al., Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro, New. Phytol. 200(1) (2013) 27-43. https://doi.org/10.1111/nph.12325.

[210]

L.W. Wang, Y. Sun, T.T. Zhao, et al., Antidepressant effects and mechanisms of the total iridoids of Valeriana jatamansi on the brain-gut axis, Planta Med. 86(3) (2020) 172-179. https://doi.org/10.1055/a-1068-9686.

[211]

F. Teng, C.N. Klinger, K.M. Felix, et al., Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells, Immunity 44 (2016) 875-888. https://doi.org/10.1016/j.immuni.2016.03.013.

[212]

Z.X. Zhao, J. Fu, S.R. Ma, et al., Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin, Theranostics 8(21) (2018) 5945-5959. https://doi.org/10.7150/thno.28068.

[213]

Y.L. Zhang, Y. Peng, L.J. Zhao, et al., Regulating the gut microbiota and SCFAs in the faeces of T2DM rats should be one of antidiabetic mechanisms of mogrosides in the fruits of Siraitia grosvenorii, J. Ethnopharmacol. 274 (2021) 114033. https://doi.org/10.1016/j.jep.2021.114033.

[214]

D.X. Song, J.G. Jiang, Hypolipidemic components from medicine food homology species used in China: pharmacological and health effects, Arch. Med. Res. 48(7) (2017) 569-581. https://doi.org/10.1016/j.arcmed.2018.01.004.

[215]

V. de Luca, B. St Pierre, The cell and developmental biology of alkaloid biosynthesis, Trends Plant Sci. 5(4) (2000) 168-173. https://doi.org/10.1016/s1360-1385(00)01575-2.

[216]

N. Shitan, K. Yazaki, Accumulation and membrane transport of plant alkaloids, Curr. Pharm. Biotechnol. 8(4) (2007) 244-252. https://doi.org/10.2174/138920107781387429.

[217]

J. Tang, Y.B. Feng, S. Tsao, et al., Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations, J. Ethnopharmacol. 126(1) (2009) 5-17. https://doi.org/10.1016/j.jep.2009.08.009.

[218]

Y.F. Zhang, X.Y. Li, D.J. Zou, et al., Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine, J. Clin. Endocrinol. Metab. 93(7) (2008) 2559-2565. https://doi.org/10.1210/jc.2007-2404.

[219]

H.L. Sun, N.J. Wang, Z. Cang, et al., Modulation of microbiota-gut-brain axis by berberine resulting in improved metabolic status in high-fat diet-fed rats, Obes. Facts 9(6) (2016) 365-378. https://doi.org/10.1159/000449507.

[220]

W. Zeng, A.G. Wu, X.G. Zhou, et al., Saponins isolated from Radix Polygalae extent lifespan by modulating complement C3 and gut microbiota, Pharmacol. Res. 170 (2021) 105697. https://doi.org/10.1016/j.phrs.2021.105697.

[221]

I. Khan, G. Huang, X.A. Li, et al., Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in ApcMin/+ mice, Pharmacol. Res. 148 (2019) 104448. https://doi.org/10.1016/j.phrs.2019.104448.

[222]

J. Wang, W.W. Feng, S.Y. Zhang, et al., Ameliorative effect of Atractylodes macrocephala essential oil combined with Panax ginseng total saponins on 5-fluorouracil induced diarrhea is associated with gut microbial modulation, J. Ethnopharmacol. 238 (2019) 111887. https://doi.org/10.1016/j.jep.2019.111887.

[223]

J. Wang, M.G. Ferruzzi, L. Ho, et al., Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment, J. Neurosci. 32(15) (2012) 5144-5150. https://doi.org/10.1523/JNEUROSCI.6437-11.2012.

[224]

F.F. Anhê, R.T. Nachbar, T.V. Varin, et al., A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss, Mol. Metab. 6(12) (2017) 1563-1573. https://doi.org/10.1016/j.molmet.2017.10.003.

[225]

Y.N. Dou, J.Q. Luo, X. Wu, et al., Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis", J. Neuroinflammation 15(1) (2018) 6. https://doi.org/10.1186/s12974-017-1047-7.

[226]

X.G. He, Q.F. Cai, J.X. Li, et al., Involvement of brain-gut axis in treatment of cerebral infarction by β-asaron and paeonol, Neurosci. Lett. 666 (2017) 78-84. https://doi.org/10.1016/j.neulet.2017.12.036.

[227]

M.H. Weng, S.Y. Chen, Z.Y. Li, et al., Camellia oil alleviates the progression of Alzheimer's disease in aluminum chloride-treated rats, Free Radic. Biol. Med. 152 (2020) 411-421. https://doi.org/10.1016/j.freeradbiomed.2020.04.004.

[228]

X.H. Kong, W.W. Duan, D.J. Li, et al., Effects of polysaccharides from Auricularia auricula on the immuno-stimulatory activity and gut microbiota in immunosuppressed mice induced by cyclophosphamide, Front. Immunol. 11 (2020) 595700. https://doi.org/10.3389/fimmu.2020.595700.

[229]

K.S. Liu, C. Zhang, H.L. Dong, et al., GSP-2, a polysaccharide extracted from Ganoderma sinense, is a novel toll-like receptor 4 agonist, PLoS One 14(8) (2019) e0221636. https://doi.org/10.1371/journal.pone.0221636.

[230]

C. Tang, J. Sun, B. Zhou, et al., Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide treated mice, Food Funct. 9(2) (2018) 937-950. https://doi.org/10.1039/c7fo01302g.

[231]

A.M. Sabogal-Guáqueta, E. Osorio, G.P. Cardona-Gómez, Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice, Neuropharmacology 102 (2016) 111-120. https://doi.org/10.1016/j.neuropharm.2015.11.002.

[232]

J.J. Song, X.T. Hou, X.Y. Hu, et al., Not only serotonergic system, but also dopaminergic system involved in albiflorin against chronic unpredictable mild stress-induced depression-like behavior in rats, Chem. Biol. Interact. 242 (2015) 211-217. https://doi.org/10.1016/j.cbi.2015.10.001.

[233]

T. Wu, Y.F. Gao, J.Y. Hao, et al., Lycopene, amaranth, and sorghum red pigments counteract obesity and modulate the gut microbiota in high-fat diet fed C57BL/6 mice, J. Funct. Foods 60 (2019) 103437. https://doi.org/10.1016/j.jff.2019.103437.

[234]

J.H. Peng, J. Leng, H.J. Tian, et al., Geniposide and chlorogenic acid combination ameliorates non-alcoholic steatohepatitis involving the protection on the gut barrier function in mouse induced by high-fat diet, Front. Pharmacol. 9 (2018) 1399. https://doi.org/10.3389/fphar.2018.01399.

[235]

Y.H. Zhao, H.Y. Li, F. Fang, et al., Geniposide improves repeated restraint stress-induced depression-like behavior in mice by ameliorating neuronal apoptosis via regulating GLP-1R/AKT signaling pathway, Neurosci. Lett. 676 (2018) 19-26. https://doi.org/10.1016/j.neulet.2018.04.010.

[236]

X.J. Zhang, Z.W. Yuan, C. Qu, et al., Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota, Pharmacol. Res. 137 (2018) 34-46. https://doi.org/10.1016/j.phrs.2018.09.010.

[237]

X. Jia, L. Jia, L. Mo, et al., Berberine ameliorates periodontal bone loss by regulating gut microbiota, J. Dent. Res. 98(1) (2019) 107-116. https://doi.org/10.1177/0022034518797275.

[238]

M. Wu, S.J. Yang, S.Z. Wang, et al., Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- mice, Front. Pharmacol. 11 (2020) 223. https://doi.org/10.3389/fphar.2020.00223.

[239]

H.H. Guo, C. Ma, W.S. Zheng, et al., Dual-stimuli-responsive gut microbiota-targeting berberine-CS/PT-NPs improved metabolic status in obese hamsters, Adv. Funct. Mater. 29(14) (2019) 1808197. https://doi.org/10.1002/adfm.201910337.

[240]

C.N. Li, X. Wang, L. Lei, et al., Berberine combined with stachyose induces better glycometabolism than berberine alone through modulating gut microbiota and fecal metabolomics in diabetic mice, Phytother. Res. 34(5) (2020) 1166-1174. https://doi.org/10.1002/ptr.6588.

[241]

A.C. Monteiro, R. Sumagin, C.R. Rankin, et al., JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function, Mol. Biol. Cell. 24(18) (2013) 2849-2860. https://doi.org/10.1091/mbc.E13-06-0298.

[242]

A. Wahlström, S.I. Sayin, H.U. Marschall, et al., Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism, Cell. Metab. 24(1) (2016) 41-50. https://doi.org/10.1016/j.cmet.2016.05.005.

[243]

M.I. Mcburney, C. Davis, C.M. Fraser, et al., Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions, J. Nutr. 149(11) (2019) 1882-1895. https://doi.org/10.1093/jn/nxz154.

[244]

Z.Y. Zong, Genome-based taxonomy for bacteria: a recent advance, Trends Microbiol. 28(11) (2020) 871-874. https://doi.org/10.1016/j.tim.2020.09.007.

Food Science and Human Wellness
Pages 1409-1426
Cite this article:
Shi R, Huang C, Gao Y, et al. Gut microbiota axis: potential target of phytochemicals from plant-based foods. Food Science and Human Wellness, 2023, 12(5): 1409-1426. https://doi.org/10.1016/j.fshw.2023.02.001

749

Views

49

Downloads

9

Crossref

8

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 09 February 2022
Revised: 28 February 2022
Accepted: 30 March 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return