AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (914.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The effect of caloric restriction on genetical pathways

Mustafa Fevzi Karagöz( )A. Gülçin Sağdıçoğlu Celep
Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Çankaya 06490, Turkey

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Energy restriction is defined as reducing nutrient intake without dragging the organism into malnutrition. Energy restriction is preferred because it is a non-genetic intervention that increases life expectancy. Nicotinamide adenine dinucleotide (NAD+) and adenosine monophosphate (AMP) levels, which are the indicators of intracellular energy deficiency, increase with energy restriction. The increase in NAD+ level stimulates sirtuin (SIRT) enzymes, and the increase in AMP level stimulates AMP-activated protein kinase (AMPK). Various mechanisms are regulated by stimulating these enzymes. By Forkhead box O (FoxO) transcription factors, the ability of resistance to oxidative stress increases, and antioxidant genes, DNA repair, and autophagy genes are stimulated. Apoptosis is induced by stimulation of the p53 protein, and tumor growth is suppressed by the disruption of aging cells. The suppression of phosphoinositide 3-kinase (PI3K)-/-Akt, and therefore mTOR signal stimulates autophagy and mitophagia, and cleanses damaged cells and organelles. Mitochondrial biogenesis is stimulated, antioxidant capacity increases, and inflammatory response decreases. Adipose tissue and lipid metabolism are regulated by the regulation of fatty acid synthesis and oxidation. As a consequence, the effects of caloric restriction on cellular metabolism are regulated through the genetic pathways.

References

[1]

W. Haller, J.E. Bines, Starvation and fasting: biochemical aspects, Encycl. Hum. Nutr. 4 (2013) 209-218. https://doi.org/10.1016/B978-0-12-375083-9.00254-3.

[2]

X.D. Li, I. Rebrin, M.J. Forster, et al., Effects of age and caloric restriction on mitochondrial protein oxidative damage in mice, Mech. Ageing Dev. 133 (2012) 30-36. https://doi.org/10.1016/j.mad.2011.12.001.

[3]

L. Fontana, L. Partridge, Promoting health and longevity through diet: from model organisms to humans, Cell 161 (2015) 106-118. https://doi.org/10.1016/J.CELL.2015.02.020.

[4]

E. Cava, L. Fontana, Will calorie restriction work in humans? Aging (Albany. NY) 5 (2013) 507-514. https://doi.org/10.18632/aging.100581.

[5]

R.J. Colman, T.M. Beasley, J.W. Kemnitz, et al., Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys, Nat. Commun. 5 (2014) 3557. https://doi.org/10.1038/ncomms4557.

[6]

J.A. Mattison, G.S. Roth, T.M. Beasley, et al., Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study, Nature 489 (2012) 318-321. https://doi.org/10.1038/nature11432.

[7]

E.M. Mercken, S.D. Crosby, D.W. Lamming, et al., Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile., Aging Cell. 12 (2013) 645-651. https://doi.org/10.1111/acel.12088.

[8]

Y. Wang, Y. Liang, P.M. Vanhoutte, SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model, FEBS Lett. 585 (2011) 986-994. https://doi.org/10.1016/j.febslet.2010.11.047.

[9]

G. López-Lluch, P. Navas, Calorie restriction, Encyc. Biomedical Gerontology (2020) 315-321. https://doi.org/10.1016/b978-0-12-801238-3.11281-4.

[10]

T. Weichhart, mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review, Gerontology 64 (2018) 127-134. https://doi.org/10.1159/000484629.

[11]

Y. Lu, F. Tao, M.T. Zhou, et al., The signaling pathways that mediate the anti-cancer effects of caloric restriction, Pharmacol. Res. 141 (2019) 512-520. https://doi.org/10.1016/j.phrs.2019.01.021.

[12]

N.Y. Kalaany, D.M. Sabatini, Tumours with PI3K activation are resistant to dietary restriction, Nature 458 (2009) 725-731. https://doi.org/10.1038/nature07782.

[13]

L. Bettedi, L.C. Foukas, Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing, Biogerontology 18 (2017) 913-929. https://doi.org/10.1007/s10522-017-9724-6.

[14]

L. Guarente, Calorie restriction and sirtuins revisited, Genes Dev. 27 (2013) 2072-2085. https://doi.org/10.1101/gad.227439.113.

[15]

H.C. Chang, L. Guarente, SIRT1 and other sirtuins in metabolism, Trends Endocrinol. Metab. 25 (2014) 138-145. https://doi.org/10.1016/j.tem.2013.12.001.

[16]

J.M. Ivy, A.J. Klar, J.B. Hicks, Cloning and characterization of four SIR genes of Saccharomyces cerevisiae, Mol. Cell. Biol. 6 (1986) 688-702. https://doi.org/10.1128/mcb.6.2.688.

[17]

S. Imai, C.M. Armstrong, M. Kaeberlein, et al., Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature 403 (2000) 795-800. https://doi.org/10.1038/35001622.

[18]

L. Mouchiroud, R.H. Houtkooper, N. Moullan, et al., The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling, Cell 154 (2013) 430-441. https://doi.org/10.1016/j.cell.2013.06.016.

[19]

E. Verdin, M.D. Hirschey, L.W.S. Finley, et al., Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling, Trends Biochem. Sci. 35 (2010) 669-675. https://doi.org/10.1016/J.TIBS.2010.07.003.

[20]

A. Chalkiadaki, L. Guarente, Sirtuins mediate mammalian metabolic responses to nutrient availability, Nat. Rev. Endocrinol. 8 (2012) 287-296. https://doi.org/10.1038/nrendo.2011.225.

[21]

L. Serrano, P. Martínez-Redondo, A. Marazuela-Duque, et al., The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation, Genes Dev. 27 (2013) 639-653. https://doi.org/10.1101/gad.211342.112.

[22]

L. Li, L. Wang, L. Li, et al., Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib, Cancer Cell 21 (2012) 266-281. https://doi.org/10.1016/J.CCR.2011.12.020.

[23]

M.T. Do, H.G. Kim, J.H. Choi, et al., Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents, Free Radic. Biol. Med. 74 (2014) 21-34. https://doi.org/10.1016/J.FREERADBIOMED.2014.06.010.

[24]

V. Audrito, T. Vaisitti, D. Rossi, et al., Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network, Cancer Res. 71 (2011) 4473-4483. https://doi.org/10.1158/0008-5472.CAN-10-4452.

[25]

J.T. Rodgers, C. Lerin, W. Haas, et al., Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1, Nature 434 (2005) 113-118. https://doi.org/10.1038/nature03354.

[26]

A.K. Walker, F. Yang, K. Jiang, et al., Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP, Genes Dev. 24 (2010) 1403-1417. https://doi.org/10.1101/gad.1901210.

[27]

L. Qiang, L. Wang, N. Kon, et al., Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ, Cell 150 (2012) 620-632. https://doi.org/10.1016/J.CELL.2012.06.027.

[28]

K. Burkewitz, Y. Zhang, W.B. Mair, AMPK at the nexus of energetics and aging, Cell. Metab. 20 (2014) 10-25. https://doi.org/10.1016/J.CMET.2014.03.002.

[29]

D. Carling, AMPK signalling in health and disease, Curr. Opin. Cell Biol. 45 (2017) 31-37. https://doi.org/10.1016/J.CEB.2017.01.005.

[30]

C. Cantó, Z. Gerhart-Hines, J.N. Feige, et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature 458 (2009) 1056-1060. https://doi.org/10.1161/CIRCULATIONAHA.112.118117.

[31]

C. Cantó, L.Q. Jiang, A.S. Deshmukh, et al., Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle, Cell Metab. 11 (2010) 213-219. https://doi.org/10.1016/j.cmet.2010.02.006.

[32]

F. Lan, J.M. Cacicedo, N. Ruderman, et al., SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1, J. Biol. Chem. 283 (2008) 27628–27635. https://doi.org/10.1074/jbc.M805711200.

[33]

J.H. Kim, J.M. Lee, J.H. Kim, et al., Fluvastatin activates sirtuin 6 to regulate sterol regulatory element-binding proteins and AMP-activated protein kinase in HepG2 cells, Biochem. Biophys. Res. Commun. 503 (2018) 1415-1421. https://doi.org/10.1016/J.BBRC.2018.07.057.

[34]

S.J. Mancini, A.D. White, S. Bijland, et al., Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation, Mol. Cell. Endocrinol. 440 (2017) 44-56. https://doi.org/10.1016/J.MCE.2016.11.010.

[35]

C. Marinangeli, S. Didier, T. Ahmed, et al., AMP-activated protein kinase is essential for the maintenance of energy levels during synaptic activation, IScience 9 (2018) 1-13. https://doi.org/10.1016/J.ISCI.2018.10.006.

[36]

K. Okubo, M. Isono, T. Asano, et al., Metformin augments panobinostat's anti-bladder cancer activity by activating AMP-activated protein kinase, Transl. Oncol. 12 (2019) 669-682. https://doi.org/10.1016/J.TRANON.2019.02.001.

[37]

U.R. Potunuru, K.V. Priya, M.K.N.S. Varsha, et al., Amarogentin, a secoiridoid glycoside, activates AMP-activated protein kinase (AMPK) to exert beneficial vasculo-metabolic effects, Biochim. Biophys. Acta - Gen. Subj. 1863 (2019) 1270-1282. https://doi.org/10.1016/J.BBAGEN.2019.05.008.

[38]

Y. Peng, Q. Sun, Y. Park, Chicoric acid promotes glucose uptake and Akt phosphorylation via AMP-activated protein kinase α-dependent pathway, J. Funct. Foods 59 (2019) 8-15. https://doi.org/10.1016/J.JFF.2019.05.020.

[39]

Y. -J. Huang, G. -X. Nan, Oxidative stress-induced angiogenesis, J. Clin. Neurosci. 63 (2019) 13-16. https://doi.org/10.1016/J.JOCN.2019.02.019.

[40]

S. Fukuda, J. Nojima, Y. Motoki, et al., A potential biomarker for fatigue: oxidative stress and anti-oxidative activity, Biol. Psychol. 118 (2016) 88-93. https://doi.org/10.1016/J.BIOPSYCHO.2016.05.005.

[41]

J.P. da Costa, R. Vitorino, G.M. Silva, et al., A synopsis on aging—theories, mechanisms and future prospects, Ageing Res. Rev. 29 (2016) 90-112. https://doi.org/10.1016/j.arr.2016.06.005.

[42]

T.P. Wycherley, G.D. Brinkworth, M. Noakes, et al., Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes, Diabetes Obes. Metab. 10 (2008) 1062-1073. https://doi.org/10.1111/j.1463-1326.2008.00863.x.

[43]

V.I. Pérez, A. Bokov, H. Van Remmen, et al., Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta - Gen. Subj. 1790 (2009) 1005-1014. https://doi.org/10.1016/j.bbagen.2009.06.003.

[44]

S.L. de Oliveira, D.B. Diniz, J. Amaya-Farfan, Carbohydrate–energy restriction may protect the rat brain against oxidative damage and improve physical performance, Br. J. Nutr. 89 (2003) 89. https://doi.org/10.1079/BJN2002749.

[45]

I. Marrocco, F. Altieri, I. Peluso, Measurement and clinical significance of biomarkers of oxidative stress in humans, Oxid. Med. Cell. Longev. 2017 (2017) 6501046. https://doi.org/10.1155/2017/6501046.

[46]

X. Qiu, K. Brown, M.D. Hirschey, et al., Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation., Cell Metab. 12 (2010) 662-667. https://doi.org/10.1016/j.cmet.2010.11.015.

[47]

A. Brunet, L.B. Sweeney, J.F. Sturgill, et al., Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase, Science 303 (2004) 2011-2015. https://doi.org/10.1126/science.1094637.

[48]

G. Lopez-Lluch, P. Navas, Calorie restriction as an intervention in ageing, J. Physiol. 594 (2016) 20432060. https://doi.org/10.1113/JP270543.

[49]

L. Guarente, Sirtuins in aging and disease, Cold Spring Harb. Symp. Quant. Biol. 72 (2007) 483488. https://doi.org/10.1101/sqb.2007.72.024.

[50]

A.E. Webb, A. Brunet, FOXO transcription factors: key regulators of cellular quality control, Trends Biochem Sci. 39 (2014) 159-169. https://doi.org/10.1016/j.tibs.2014.02.003.

[51]

L.O. Klotz, C. Sánchez-Ramos, I. Prieto-Arroyo, et al., Redox regulation of FoxO transcription factors, Redox Biol. 6 (2015) 51-72. https://doi.org/10.1016/j.redox.2015.06.019.

[52]

A. Salminen, J.M.T. Hyttinen, K. Kaarniranta, AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan, J. Mol. Med. 89 (2011) 667-676. https://doi.org/10.1007/s00109-011-0748-0.

[53]

A.A. Sablina, A.V. Budanov, G.V. Ilyinskaya, et al., The antioxidant function of the p53 tumor suppressor, Nat. Med. 11 (2005) 1306-1313. https://doi.org/10.1038/nm1320.

[54]

G. Kroemer, G. Mariño, B. Levine, Autophagy and the integrated stress response, Mol. Cell. 40 (2010) 280-293. https://doi.org/10.1016/j.molcel.2010.09.023.

[55]

S.E. Kim, R. Mori, I. Shimokawa, Does calorie restriction modulate inflammaging via FoxO transcription factors? Nutrients 12 (2020) 1-19. https://doi.org/10.3390/nu12071959.

[56]

J. Nakae, M. Oki, Y. Cao, The FoxO transcription factors and metabolic regulation, FEBS Lett. 582 (2008) 54-67. https://doi.org/10.1016/j.febslet.2007.11.025.

[57]

J.P. Leduc-Gaudet, M. Picard, F. St-Jean Pelletier, et al., Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice., Oncotarget 6 (2015) 17923-17937. https://doi.org/10.18632/oncotarget.4235.

[58]

D.J. Bonda, M.A. Smith, G. Perry, et al., The mitochondrial dynamics of alzheimers disease and parkinsons disease offer important opportunities for therapeutic intervention, Curr. Pharm. Des. 17 (2011) 3374-3380. https://doi.org/10.2174/138161211798072562.

[59]

T. Wenz, Regulation of mitochondrial biogenesis and PGC-1α under cellular stress, Mitochondrion 13 (2013) 134-142. https://doi.org/10.1016/j.mito.2013.01.006.

[60]

R.C. Scarpulla, Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network, Biochim. Biophys. Acta - Mol. Cell Res. 1813 (2011) 1269-1278. https://doi.org/10.1016/j.bbamcr.2010.09.019.

[61]

T. Wenz, Mitochondria and PGC-1α in aging and age-associated diseases, J. Aging Res. 2011 (2011) 810619. https://doi.org/10.4061/2011/810619.

[62]

R.C. Scarpulla, R.B. Vega, D.P. Kelly, Transcriptional integration of mitochondrial biogenesis, Trends Endocrinol. Metab. 23 (2012) 459-466. https://doi.org/10.1016/j.tem.2012.06.006.

[63]

D. Sebastián, E. Sorianello, J. Segalés, et al., Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway., EMBO J. 35 (2016) 1677-1693. https://doi.org/10.15252/embj.201593084.

[64]

D. Bach, S. Pich, F.X. Soriano, et al., Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity, J. Biol. Chem. 278 (2003) 17190-17197. https://doi.org/10.1074/jbc.M212754200.

[65]

Y. Chen, G.W. Dorn, PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria, Science 340 (2013) 471-475. https://doi.org/10.1126/science.1231031.

[66]

J.P. Muñoz, S. Ivanova, J. Sánchez-Wandelmer, et al., Mfn2 modulates the UPR and mitochondrial function via repression of PERK, EMBO J. 32 (2013) 2348-2361. https://doi.org/10.1038/emboj.2013.168.

[67]

D. Sebastián, M.I. Hernández-Alvarez, J. Segalés, et al., Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis, PNAS 109 (2012) 5523-5528. https://doi.org/10.1073/pnas.1108220109.

[68]

S. Klaus, M. Ost, Mitochondrial uncoupling and longevity – a role for mitokines? Exp. Gerontol. 130 (2020) 110796. https://doi.org/10.1016/j.exger.2019.110796.

[69]

M.M. Mehdi, P. Solanki, P. Singh, Oxidative stress, antioxidants, hormesis and calorie restriction: the current perspective in the biology of aging, Arch. Gerontol. Geriatr. 95 (2021) 104413. https://doi.org/10.1016/j.archger.2021.104413.

[70]

J.H. Um, J. Yun, Emerging role of mitophagy in human diseases and physiology, BMB Rep. 50 (2017) 299-307.

[71]

E. Dombi, H. Mortiboys, J. Poulton, Modulating mitophagy in mitochondrial disease, Curr. Med. Chem. 25 (2019) 5597-5612. https://doi.org/10.2174/0929867324666170616101741.

[72]

H.J. Weir, P. Yao, F.K. Huynh, et al., Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling, Cell Metab. 26 (2017) 884-896. https://doi.org/10.1016/J.CMET.2017.09.024.

[73]

S. Mehrabani, M. Bagherniya, G. Askari, et al., The effect of fasting or calorie restriction on mitophagy induction: a literature review, J. Cachexia. Sarcopenia Muscle. 11 (2020) 1447-1458. https://doi.org/10.1002/jcsm.12611.

[74]

Y.J. Huang, L. Zhang, L.Y. Shi, et al., Caloric restriction ameliorates acrolein-induced neurotoxicity in rats, Neurotoxicology 65 (2018) 44-51. https://doi.org/10.1016/j.neuro.2018.01.003.

[75]

R.G. Jones, D.R. Plas, S. Kubek, et al., AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Mol. Cell. 18 (2005) 283-293. https://doi.org/10.1016/j.molcel.2005.03.027.

[76]

R. Okoshi, T. Ozaki, H. Yamamoto, et al., Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress, J. Biol. Chem. 283 (2008) 3979-3987. https://doi.org/10.1074/jbc.M705232200.

[77]

F. Busch, A. Mobasheri, P. Shayan, et al., Sirt-1 is required for the inhibition of apoptosis and inflammatory responses in human tenocytes, J. Biol. Chem. 287 (2012) 25770-25781. https://doi.org/10.1074/jbc.M112.355420.

[78]

B. Peck, C.Y. Chen, K.K. Ho, et al., SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2, Mol. Cancer Ther. 9 (2010) 844-855. https://doi.org/10.1158/1535-7163.MCT-09-0971.

[79]

L. Ling, S. Gu, Y. Cheng, Resveratrol inhibits adventitial fibroblast proliferation and induces cell apoptosis through the SIRT1 pathway, Mol. Med. Rep. 15 (2017) 567-572. https://doi.org/10.3892/mmr.2016.6098.

[80]

E. Pozo-Guisado, J.M. Merino, S. Mulero-Navarro, et al., Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-ĸB, Int. J. Cancer. 115 (2005) 74-84. https://doi.org/10.1002/ijc.20856.

[81]

B. Huang, X. Cheng, D. Wang, et al., Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1α signaling, Oncotarget 5 (2014). https://doi.org/10.18632/oncotarget.1963.

[82]

E.S. Jung, H. Choi, H. Song, et al., p53-dependent SIRT6 expression protects Aβ42-induced DNA damage, Sci. Rep. 6 (2016) 25628. https://doi.org/10.1038/srep25628.

[83]

R. Firestein, G. Blander, S. Michan, et al., The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth, PLoS One 3 (2008) e2020. https://doi.org/10.1371/journal.pone.0002020.

[84]

D.C. Altieri, Survivin, cancer networks and pathway-directed drug discovery, Nat. Rev. Cancer. 8 (2008) 6170. https://doi.org/10.1038/nrc2293.

[85]

S. Nemoto, M.M. Fergusson, T. Finkel, Nutrient availability regulates SIRT1 through a forkhead-dependent pathway, Science 306 (2004) 2105-2108. https://doi.org/10.1126/science.289.5487.2126.

[86]

C. Ntsapi, B. Loos, Caloric restriction and the precision-control of autophagy: a strategy for delaying neurodegenerative disease progression, Exp. Gerontol. 83 (2016) 97-111. https://doi.org/10.1016/j.exger.2016.07.014.

[87]

M. Igarashi, L. Guarente, mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction, Cell 166 (2016) 436-450. https://doi.org/10.1016/j.cell.2016.05.044.

[88]

L. Ma, W. Dong, R. Wang, et al., Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice, Brain Res. Bull. 116 (2015) 67-72. https://doi.org/10.1016/j.brainresbull.2015.06.004.

[89]

I.H. Lee, L. Cao, R. Mostoslavsky, et al., A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy, Proc. Natl. Acad. Sci. 105 (2008) 3374-3379. https://doi.org/10.1073/PNAS.0712145105.

[90]

A. Salminen, K. Kaarniranta, AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network, Ageing Res. Rev. 11 (2012) 230-241. https://doi.org/10.1016/J.ARR.2011.12.005.

[91]

J. Karar, A. Maity, PI3K/AKT/mTOR pathway in angiogenesis, Front. Mol. Neurosci. 4 (2011) 51. https://doi.org/10.3389/fnmol.2011.00051.

[92]

Y. Zhou, S. Li, J. Li, et al., Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer, Cell. Physiol. Biochem. 42 (2017) 1431-1446. https://doi.org/10.1159/000479207.

[93]

S. Lin, Q. Zhang, X. Shao, et al., IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway, Cell Prolif. 50 (2017) e12390. https://doi.org/10.1111/cpr.12390.

[94]

L.M. Sipe, C. Yang, J. Ephrem, et al., Differential sympathetic outflow to adipose depots is required for visceral fat loss in response to calorie restriction, Nutr. Diabetes 7 (2017) e260. https://doi.org/10.1038/nutd.2017.13.

[95]

L.F. Gonçalves, T.Q. Machado, C. Castro-Pinheiro, et al., Ageing is associated with brown adipose tissue remodelling and loss of white fat browning in female C57BL/6 mice, Int. J. Exp. Pathol. 98 (2017) 100-108. https://doi.org/10.1111/iep.12228.

[96]

N. Fujii, T. Narita, N. Okita, et al., Sterol regulatory element-binding protein-1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction, Aging Cell. 16 (2017) 508-517. https://doi.org/10.1111/acel.12576.

[97]

M. Kobayashi, Y. Higami, A novel caloric restriction mediator, Aging (Albany. NY) 9 (2017) 2012-2013. https://doi.org/10.18632/aging.101311.

[98]

K.J. Nadeau, L.B. Ehlers, L.E. Aguirre, et al., Exercise training and calorie restriction increase SREBP-1 expression and intramuscular triglyceride in skeletal muscle, Am. J. Physiol. Metab. 291 (2006) E90-E98. https://doi.org/10.1152/ajpendo.00543.2005.

[99]

M. Kobayashi, N. Fujii, T. Narita, et al., SREBP-1c-dependent metabolic remodeling of white adipose tissue by caloric restriction, Int. J. Mol. Sci. 19 (2018) 3335. https://doi.org/10.3390/ijms19113335.

[100]

S. Fabbiano, N. Suárez-Zamorano, D. Rigo, et al., Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling, Cell Metab. 24 (2016) 434-446. https://doi.org/10.1016/J.CMET.2016.07.023.

[101]

M. Kobayashi, S. Uta, M. Otsubo, et al., Caloric restriction-associated metabolic remodeling of white adipose tissue, Nutrients 12 (2020) 1-15.

[102]

T. Jiménez Jaime, L. Leiva Balich, G. Barrera Acevedo, et al., Effect of calorie restriction on energy expenditure in overweight and obese adult women, Nutr. Hosp. 31 (2015) 2428-2436. https://doi.org/10.3305/nh.2015.31.6.8782.

[103]

V. Pons, J. Riera, X. Capó, et al., Calorie restriction regime enhances physical performance of trained athletes, J. Int. Soc. Sports Nutr. 15 (2018) 12. https://doi.org/10.1186/s12970-018-0214-2.

[104]

M.J. Devlin, A.M. Cloutier, N.A. Thomas, et al., Caloric restriction leads to high marrow adiposity and low bone mass in growing mice, J. Bone Miner. Res. 25 (2010) 2078-2088. https://doi.org/10.1002/jbmr.82.

[105]

D.S. Kelley, P.A. Daudu, L.B. Branch, et al., Energy restriction decreases number of circulating natural killer cells and serum levels of immunoglobulins in overweight women, Eur. J. Clin. Nutr. 48 (1994) 9-18. https://doi.org/10.1016/j.numecd.2009.04.007.

[106]

D.M. Duriancik, J.J. Tippett, J.L. Morris, et al., Age, calorie restriction, and age of calorie restriction onset reduce maturation of natural killer cells in C57Bl/6 mice, Nutr. Res. 55 (2018) 81-93. https://doi.org/10.1016/j.nutres.2018.04.009.

[107]

J.E. Kim, G. Lin, J. Zhou, et al., Weight loss achieved using an energy restriction diet with normal or higher dietary protein decreased the number of CD14++CD16+ proinflammatory monocytes and plasma lipids and lipoproteins in middle-aged, overweight, and obese adults, Nutr. Res. 40 (2017) 75-84. https://doi.org/10.1016/j.nutres.2017.02.007.

Food Science and Human Wellness
Pages 1450-1457
Cite this article:
Karagöz MF, Gülçin Sağdıçoğlu Celep A. The effect of caloric restriction on genetical pathways. Food Science and Human Wellness, 2023, 12(5): 1450-1457. https://doi.org/10.1016/j.fshw.2023.02.007

610

Views

54

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 02 March 2021
Revised: 05 May 2021
Accepted: 21 June 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return