AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Dietary Lactiplantibacillus plantarum KX041 attenuates colitis-associated tumorigenesis and modulates gut microbiota

Tao Wanga,bPanpan WangaLi YinaXiuchao WangaYuanyuan ShanaYanglei YiaYuan ZhouaBianfang Liua( )Xin Wanga( )Xin Lüa( )
College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, China
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Colorectal cancer (CRC) is one of the most common cancers and supplementation of probiotics may be a promising intervention method. The present study aimed to investigate the anti-CRC effects of Lactiplantibacillus plantarum KX041 on a CRC mouse model. The CRC mice were induced by 10 mg/kg azoxymethane and 2% dextran sulfate sodium. L. plantarum KX041 was orally administrated once daily (1 × 109 CFU/mouse). Results showed that L. plantarum KX041 could significantly inhibit inflammation, tumor formation, and induce tumor cells apoptosis. Moreover, this probiotic could ameliorate the damage of intestinal barrier by recovering tight junction protein expression (like Occludin, Claudin-1, and ZO-1) and preventing goblet cell loss. Furthermore, the oxidative stress was alleviated by increasing the level of antioxidant mediators (like GSH and SOD) and reducing the level of oxidative mediators (like MDA and MPO). In addition, treatment with L. plantarum KX041 could directly regulate gut microbiota, thereby increasing the abundance of beneficial bacteria (like SCFAs-producing bacteria, Akkermansia) and decreasing the abundance of harmful bacteria (like pro-inflammatory bacteria, Parasutterella), which in turn raised SCFAs levels and lowered LPS levels. In conclusion, L. plantarum KX041 could effectively ameliorate CRC via reshaping intestinal microenvironment, alleviating inflammation, maintaining intestinal permeability, and attenuating oxidative stress.

References

[1]

F. Bray, J. Ferlay, I. Soerjomataram, et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (2018) 394-424. https://doi.org/10.3322/caac.21492.

[2]

L. Yin, Z. Meng, Y.X. Zhang, et al., Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer, J. Controlled Release 271 (2018) 31-44. https://doi.org/10.1016/j.jconrel.2017.12.013.

[3]

Y.C. Yue, K. Ye, J. Lu, et al., Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment, Biomed. Pharmacother. 127 (2020) 110159. https://doi.org/10.1016/j.biopha.2020.110159.

[4]
J.M. O'Brien, Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland, by P. Lichtenstein, N.V. Holm, P.K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki. N. Engl. J. Med. 343: 78-84, 2000, Surv. Ophthalmol. 45 (2000) 167-168. https://doi.org/10.1016/s0039-6257(00)00165-x.
[5]

K. Czene, P. Lichtenstein, K. Hemminki, Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish family-cancer database, Int. J. Cancer 99 (2002) 260-266. https://doi.org/10.1002/ijc.10332.

[6]

S.H. Wong, J. Yu, Gut microbiota in colorectal cancer: mechanisms of action and clinical applications, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 690-704. https://doi.org/10.1038/s41575-019-0209-8.

[7]

L. Zitvogel, R. Daillere, M.P. Roberti, et al., Anticancer effects of the microbiome and its products, Nat. Rev. Microbiol. 15 (2017) 465-478. https://doi.org/10.1038/nrmicro.2017.44.

[8]

G.P. Donaldson, S.M. Lee, S.K. Mazmanian, Gut biogeography of the bacterial microbiota, Nat. Rev. Microbiol. 14 (2016) 20-32. https://doi.org/10.1038/nrmicro3552.

[9]

D.B. Yao, M. Dong, C.L. Dai, et al., Inflammation and inflammatory cytokine contribute to the initiation and development of ulcerative colitis and its associated cancer, Inflamm. Bowel Dis. 25 (2019) 1595-1602. https://doi.org/10.1093/ibd/izz149.

[10]

Z. Xu, W. Chen, Q. Deng, et al., Flaxseed oligosaccharides alleviate DSS-induced colitis through modulation of gut microbiota and repair of the intestinal barrier in mice, Food Funct. 11 (2020) 8077-8088. https://doi.org/10.1039/d0fo01105c.

[11]

W.N. Fong, Q. Li, J. Yu, Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer, Oncogene 39 (2020) 4925-4943. https://doi.org/10.1038/s41388-020-1341-1.

[12]

D.S. Calheiros Silveira, L.C. Veronez, L.C. Lopes-Junior, et al., Lactobacillus bulgaricus inhibits colitis-associated cancer via a negative regulation of intestinal inflammation in azoxymethane/dextran sodium sulfate model, World J. Gastroenterol. 26 (2020). https://doi.org/10.3748/wjg.v26.i43.6782.

[13]

Y.Y. Dong, J. Zhu, M. Zhang, et al., Probiotic Lactobacillus salivarius Ren prevent dimethylhydrazine-induced colorectal cancer through protein kinase B inhibition, Appl. Microbiol. Biotechnol. 104 (2020) 7377-7389. https://doi.org/10.1007/s00253-020-10775-w.

[14]

Y.Z. Yang, Y. Xia, H.Q. Chen, et al., The effect of perioperative probiotics treatment for colorectal cancer: short-term outcomes of a randomized controlled trial, Oncotarget 7 (2016) 8432-8440. https//doi. org/10.18632/oncotarget. 7045.

[15]

M. Eslami, B. Yousefi, P. Kokhaei, et al., Importance of probiotics in the prevention and treatment of colorectal cancer, J. Cell. Physiol. 234 (2019) 17127-17143. https://doi.org/10.1002/jcp.28473.

[16]

S.A. dos Reis, L.L. da Conceição, N.P. Siqueira, et al., Review of the mechanisms of probiotic actions in the prevention of colorectal cancer, Nutr. Res. 37 (2017) 1-19. https://doi.org/10.1016/j.nutres.2016.11.009.

[17]

X. Wang, C.G. Shao, L. Liu, et al., Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041, Int. J. Biol. Macromol. 103 (2017) 1173-1184. https://doi.org/10.1016/j.ijbiomac.2017.05.118.

[18]

M.L. Slattery, A. Lundgreen, B. Welbourn, et al., Oxidative balance and colon and rectal cancer: interaction of lifestyle factors and genes, Mutat. Res.-Fundam. Mol. Mech. Mutagen. 734 (2012) 30-40. https://doi.org/10.1016/j.mrfmmm.2012.04.002.

[19]

J. Sun, H. Chen, J. Kan, et al., Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice, Int. J. Biol. Macromol. 153 (2020) 708-722. https://doi.org/10.1016/j.ijbiomac.2020.03.053.

[20]

E. Jacouton, F. Chain, H. Sokol, et al., Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer, Front. Immunol. 8 (2017) 1153. https://doi.org/10.3389/fimmu.2017.01553.

[21]

F. Xie, H. Zhang, C. Zheng, et al., Costunolide improved dextran sulfate sodium-induced acute ulcerative colitis in mice through NF-κB, STAT1/3, and Akt signaling pathways, Int. Immunopharmacol. 84 (2020) 106567. https://doi.org/10.1016/j.intimp.2020.106567.

[22]

T. Wang, H. Yan, Y.Y. Lu, et al., Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation, Eur. J. Nutr. 59 (2020) 2709-2728. https://doi.org/10.1007/s00394-019-02117-y.

[23]

P. Yu, C.X. Ke, J.X. Guo, et al., Lactobacillus plantarum L15 Alleviates colitis by inhibiting LPS-mediated NF-kappa B activation and ameliorates DSS-induced gut microbiota dysbiosis, Front. Immunol. 11 (2020) 575173. https://doi.org/10.3389/fimmu.2020.575173.

[24]

M.Y. Sun, Y.J. Liu, Y.L. Song, et al., The ameliorative effect of Lactobacillus plantarum-12 on DSS-induced murine colitis, Food Funct. 11 (2020) 5205-5222. https://doi.org/10.1039/d0fo00007h.

[25]

M. Zhang, X. Hao, T. Aziz, et al., Exopolysaccharides from Lactobacillus plantarum YW11 improve immune response and ameliorate inflammatory bowel disease symptoms, Acta Biochim. Pol. 67 (2020) 485-493. https://doi.org/10.18388/abp.2020_5171.

[26]

T.P. van Staa, T. Card, R.F. Logan, et al., 5-Aminosalicylate use and colorectal cancer risk in inflammatory bowel disease: a large epidemiological study, Gut 54 (2005) 1573-1578. https://doi.org/10.1136/gut.2005.070896.

[27]

R. Fischer, O. Maier, Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF, Oxid. Med. Cell. Longev. 2015 (2015) 610813. https://doi.org/10.1155/2015/610813.

[28]

F. Nielsen, B.B. Mikkelsen, J.B. Nielsen, et al., Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors, Clin. Chem. 43 (1997) 1209-1214. https://doi.org/10.1016/S0009-9120(97)00018-0.

[29]

F.A. Moura, K.Q. de Andrade, J.C.F. Dos Santos, et al., Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol. 6 (2015) 617-639. https://doi.org/10.1016/j.redox.2015.10.006.

[30]

L. Roncucci, E. Mora, F. Mariani, et al., Myeloperoxidase-positive cell infiltration in colorectal carcinogenesis as indicator of colorectal cancer risk, Cancer Epidemiol. Biomarkers Prev. 17 (2008) 2291-2297. https://doi.org/10.1158/1055-9965.epi-08-0224.

[31]

X. Zhu, Y. Sun, Y. Zhang, et al., Dieckol alleviates dextran sulfate sodium-induced colitis via inhibition of inflammatory pathway and activation of Nrf2/HO-1 signaling pathway, EnTox 36 (2020) 782-788. https://doi.org/10.1002/tox.23080.

[32]

Z. Gao, Y. Han, Y. Hu, et al., Targeting HO-1 by epigallocatechin-3-gallate reduces contrast-induced renal injury via anti-oxidative stress and anti-inflammation pathways, PLoS One 11 (2016) e0149032. https://doi.org/10.1371/journal.pone.0149032.

[33]

P. Liu, Y. Wang, G. Yang, et al., The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis, Pharmacol. Res. 165 (2021) 105420. https://doi.org/10.1016/j.phrs.2021.105420.

[34]

L. Zhang, Q.Q. Qin, M.N. Liu, et al., Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats, Pathog. Dis. 76 (2018) fty028. https://doi.org/10.1093/femspd/fty028.

[35]

G.Y. Koh, A.V. Kane, X. Wu, et al., Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated A/J mice, Carcinogenesis. 41 (2020) 909-917. https://doi.org/10.1093/carcin/bgaa018.

[36]

X. Liu, Y.W. Cheng, L. Shao, et al., Alterations of the predominant fecal microbiota and disruption of the gut mucosal barrier in patients with early-stage colorectal cancer, BioMed Res. Int. 2020 (2020) 2948282. https://doi.org/10.1155/2020/2948282.

[37]

L. Robrahn, L. Jiao, T. Cramer, Barrier integrity and chronic inflammation mediated by HIF-1 impact on intestinal tumorigenesis, Cancer Lett. 490 (2020) 186-192. https://doi.org/10.1016/j.canlet.2020.07.002.

[38]

J. Sun, I. Kato, Gut microbiota, inflammation and colorectal cancer, Genes Dis. 3 (2016) 130-143. https://doi.org/10.1016/j.gendis.2016.03.004.

[39]

M.B. Zeisel, P. Dhawan, T.F. Baumert, Tight junction proteins in gastrointestinal and liver disease, Gut 68 (2019) 547-561. https://doi.org/10.1136/gutjnl-2018-316906.

[40]

B.C.E. Peck, A.T. Mah, W.A. Pitman, et al., Functional transcriptomics in diverse intestinal epithelial cell types reveals robust microRNA sensitivity in intestinal stem cells to microbial status, J. Biol. Chem. 292 (2017) 2586-2600. https://doi.org/10.1074/jbc.M116.770099.

[41]

H. Song, W.Y. Wang, B. Shen, et al., Pretreatment with probiotic Bifico ameliorates colitis-associated cancer in mice: transcriptome and gut flora profiling, Cancer Sci. 109 (2018) 666-677. https://doi.org/10.1111/cas.13497.

[42]

Y.J. Chen, H. Wu, S.D. Wu, et al., Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation, J. Gastroenterol. Hepatol. 33 (2018) 1844-1852. https://doi.org/10.1111/jgh.14281.

[43]

B.C. dos Santos Cruz, L.L. da Conceicao, T.A. de Oliveira Mendes, et al., Use of the synbiotic VSL#3 and yacon-based concentrate attenuates intestinal damage and reduces the abundance of Candidatus Saccharimonas in a colitis-associated carcinogenesis model, Food Res. Int. 137 (2020) 109721. https://doi.org/10.1016/j.foodres.2020.109721.

[44]

A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9066-9071. https://doi.org/10.1073/pnas.1219451110.

[45]

M. Fukata, A. Chen, A.S. Vamadevan, et al., Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors, Gastroenterology 133 (2007) 1869-1881. https://doi.org/10.1053/j.gastro.2007.09.008.

[46]

S.D. Gomes, C.S. Oliveira, J. Azevedo-Silva, et al., The role of diet related short-chain fatty acids in colorectal cancer metabolism and survival: prevention and therapeutic implications, Curr. Med. Chem. 27 (2020) 4087-4108. https://doi.org/10.2174/0929867325666180530102050.

[47]

Y. Yao, X. Cai, W. Fei, et al., The role of short-chain fatty acids in immunity, inflammation and metabolism, Crit. Rev. Food Sci. Nutr. 62 (2022) 1-12. https://doi.org/10.1080/10408398.2020.1854675.

[48]

M. Li, B. van Esch, G.T.M. Wagenaar, et al., Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells, Eur. J. Pharmacol. 831 (2018) 52-59. https://doi.org/10.1016/j.ejphar.2018.05.003.

[49]

P.V. Chang, L.M. Hao, S. Offermanns, et al., The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 2247-2252. https://doi.org/10.1073/pnas.1322269111.

[50]

N. Singh, A. Gurav, S. Sivaprakasam, et al., Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity 40 (2014) 128-139. https://doi.org/10.1016/j.immuni.2013.12.007.

Food Science and Human Wellness
Pages 1626-1636
Cite this article:
Wang T, Wang P, Yin L, et al. Dietary Lactiplantibacillus plantarum KX041 attenuates colitis-associated tumorigenesis and modulates gut microbiota. Food Science and Human Wellness, 2023, 12(5): 1626-1636. https://doi.org/10.1016/j.fshw.2023.02.012

494

Views

46

Downloads

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 10 March 2021
Revised: 07 April 2021
Accepted: 21 April 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return