AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Phenylethanoid glycosides from traditional Mongolian medicine Cymbaria daurica alleviate alloxan-induced INS-1 cells oxidative stress and apoptosis

Ruyu Shia,bXing LiaBing GaoaChunhong Zhanga,c( )Minhui Lia,b,c( )
Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Cymbaria daurica L. is a well-known traditional Mongolian medicine, which has been used to treat diabetes-related conditions characterized by persistent thirst and hunger, copious urination, and weight loss. We aimed to investigate the protective effects of C. daurica extracts and phenylethanoid glycosides including verbascoside and isoacteoside on INS-1 cells. We discovered phenylethanoid glycosides from n-butanol extract with large content through extraction and separation. We continue to study the protective effects of phenylethanoid glycosides including verbascoside and isoacteoside on INS-1 cells. INS-1 cells were treated with C. daurica, cell viability assay, RNA-seq technology, superoxide dismutase activity and malonaldehyde content, quantitative real time-PCR and Western blot analysis were used to study the protective effects of C. daurica. Cell viability assay resulted that n-butanol extract and verbascoside, isoacteoside showed protective effects of C. daurica. According to the RNA-seq technology to identify the differentially expressed genes in INS-1 cells, the pathway of gene enrich the protective effect of C. daurica on oxidative stress. SOD activity and the content of MDA indicated that C. daurica could enhance the antioxidant capacity of INS-1 cells. Further investigation indicated C. daurica alleviate oxidative stress by inhibiting INS-1 cell apoptosis. C. daurica may play an anti-diabetic role by inhibiting islet cell apoptosis.

References

[1]

J.K. Lu, Y.C. Hu, L.H. Wang, et al., Understanding the multitarget pharmacological mechanism of the traditional Mongolian common herb pair GuangZao-RouDouKou acting on coronary heart disease sased on a bioinformatics approach, Evid. -Based Compl. Alt. (2018) 1-12. https://doi.org/10.1155/2018/7956503.

[2]

E.M. Maguire, S.W.A. Pearce, Q.Z. Xiao, Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease, Vasc. Pharmacol. 112 (2018) 54-71. https://doi.org/10.1016/j.vph.2018.08.002.

[3]

Y.P. Feng, J.P. Liu, L.H. Zhong, et al., Effects of nutmeg wuwei pill on unstable angina pectoris and on the levels of resistin and high-sensitivity c-reactive protein, Hebei Medical J. 37 (2015) 2776-2778. https://doi.org/10.3969/j.issn.1002-7386.2015.18.018.

[4]
Yutuo-yundangongbu, Four-Part Medicine Classics, People's Medical Publishing House, 1983.
[5]
L.L. Bao, F.S. Song, G.E. Du, et al., The progress of traditional mongolian medicine erden-uril, Chin. J. Ethnomed. Ethnopharm. 28 (2019) 57-60. https://doi.org/CNKI:SUN:MZMJ.0.2019-03-015.
[6]

C.P. Domingueti, L.M.S. Dusse, M.G. Carvalho, et al., Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications, J. Diabetes Complications 30 (2015) 738-745. https://doi.org/10.1016/j.jdiacomp.2015.12.018.

[7]

G.S. Andersen, T. Thybo, H. Cederberg, et al., The DEXLIFE study methods: Identifying novel candidate biomarkers that predict progression to type 2 diabetes in high risk individuals, Diabetes Res. Clin. Pr. 106 (2014) 383-389. https://doi.org/10.1016/j.diabres.2014.07.025.

[8]

N. Sarwar, P. Gao, S.R. Seshasai, et al., Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of L02 prospective studies, Lancet 375 (2010) 2215-2222. https://doi.org/10.1016/S0140-6736(10)60484-9.

[9]

S. Rao, K. Seshasai, S. Kaptoge, et al., Diabetes mellitus, fasting glucose, and risk of cause-specific death, N. Engl. J. Med. 364 (2011) 829-841. https://doi.org/10.1056/NEJMoa1008862.

[10]

Y.S. Oh, G.D. Bae, D.J. Baek, et al., Fatty acid-Induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes, Front. Endocrinol. 16 (2018) 384. https://doi.org/10.3389/fendo.2018.00384.

[11]
H. Jiao, Y.X. Zeng, S.F. Chen, et al., Pharmaceutical standard of the ministry of health of the people republic of China (Mongolian medicine standard). China, People's Medical Publishing House. 1998.
[12]
Health department of Inner Mongolia autonomous region, "Standard of Mongolian medicinal materials in inner Mongolia, " (China: Inner Mongolia Science and Technology Press). China, 1987.
[13]

Q.H. Wu, B.T. Li, S.L. Zhu, et al., Research on network pharmacology of Mongolian medicine Cymbaria in treatment of type 2 diabetes, China Journal of Chinese Materia Medica 45 (2020) 1764-1771. https://doi.org/10.19540/j.cnki.cjcmm.20191213.401.

[14]

Y.Q. Chang, M.H. Li, S. Jiang, et al., Effect of the extracts from Cymbariae on the blood glucose levels in alloxan-induced diabetic mice, Baotou Med. Coll. 31 (2015) 6-7. https://doi.org/CNKI:SUN:BTYX.0.2015-05-005.

[15]

X. Gong, J. Wang, M.Y. Zhang, et al., Bioactivity, compounds isolated, chemical qualitative, and quantitative analysis of Cymbaria daurica extracts, Front. Pharmacol. 11 (2020) 48. https://doi.org/10.3389/fphar.2020.00048.

[16]

C. Andary, G. Privat, R. Wylde, et al., Pheliposideet arenarioside, deux nouveaux esters heterosidiques de l'acide cafeique isoles de Orobanche arenaria, J. Nat. Prod. 48 (1985) 778-783. https://doi.org/10.1021/np50041a010.

[17]

J. Wu, X.L. Zhou, X.L. Zhou, et al., Chemical constituents from flowers of Incarvillea younghusbandii, Chin. Tradit. Herbal. Drugs 43 (2012) 55-59.

[18]

P. Liu, Y.L. Yang, X.R. Deng, et al., Studies on chemical constituents of glycosides from syringa pubenscens, Chin. J. Exp. Tradit. Med. Formulae. 17 (2011) 127-131. https://doi.org/10.3969/j.issn.1005-9903.2011.19.038.

[19]

R. Seger, E.G. Krebs, The MAPK signaling cascade, FASEB J. 9 (1995) 726-735. https://doi.org/10.1096/fasebj.9.9.7601337.

[20]

L. Chang, and M. Karin, Mammalian MAP kinase signalling cascades, Nature 410 (2001) 37-40. https://doi.org/10.1038/35065000.

[21]

D. Lovre, V. Fonseca, Benefits of timely basal insulin control in patients with type 2 diabetes, J. Diabetes Complications 29 (2015) 295-301.

[22]

P.S. Sellamuthu, P. Arulselvan, B.P. Muniappan, et al, Mangiferin from salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocininduced diabetic rats, J. Med. Food. 16 (2013) 719-27. https://doi.org/10.1089/jmf.2012.2480.

[23]

G.C. Weir, S. Bonner-Weir, Islet β-cell mass in diabetes and how it relates to function, birth, and death, Ann. N. Y. Acad. Sci. 1281 (2013) 92-105. https://doi.org/10.1111/nyas.12031.

[24]

X.P. Ye, C.Q. Song, P. Yuan, α-Glucosidase and α-amylase inhibitory activity of common constituents from Traditional Chinese Medicine used for diabetes mellitus, Chin. J. Nat. Medi. 8 (2010) 349-352. https://doi.org/10.1016/S1875-5364(10)60041-6.

[25]

P. Guo, Y. Li, S. Eslamfam, et al., Discovery of novel genes mediating glucose and lipid metabolisms, Curr. Protein Pept. Sci. 18 (2017) 609-618. https://doi.org/10.2174/1389203717666160627084304.

[26]

A.E. Kitabchi, M. Temprosa, W.C. Knowler, Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of life style intervention and metformin, Diabetes 54 (2005) 2404-2414. https://doi.org/10.2337/diabetes.54.8.2404.

[27]

K. Zhu, Z. Meng, Y. Tian, Hypoglycemic and hypolipidemic effects of total glycosides of Cistanche tubulosa in diet/streptozotocin-induced diabetic rats, J. Ethnopharmacol. (2021) 113991. https://doi.org/10.1016/j.jep.2021.113991.

[28]

L.W. Zhang, J. Liu, P. Yang, Study on the antioxidant activity of the Chinese herb forsythia suspensa extract, Food Sci. 24 (2003) 122-125. https://doi.org/10.1007/s11769-003-0044-1.

[29]

Z.D. He, K.M. Lau, H.X. Xu, Antioxidant activity of phenylethanoid glycosides from Brandisia hancei, J. Ethnopharmacol. 71 (2000) 483-486. https://doi.org/10.1016/S0378-8741(00)00189-6.

[30]

N. Aligiannis, S. Mitaku, E. Tsitsa-Tsardis, Methanolic extract of Verbascum macrurum as a source of natural preservatives against oxidative rancidity, J. Agric. Food Chem. 51 (2003) 7308-7312. https://doi.org/10.1021/jf034528+.

[31]

M. Jayachandran, R. Vinayagam, R.R. Ambati, Guava leaf extract diminishes hyperglycemia and oxidative stress, prevents β-cell death, inhibits inflammation, and regulates NF-kB signaling pathway in STZ induced diabetic rats, Biomed. Res. Int. (2018) 1-14. https://doi.org/10.1155/2018/4601649.

[32]

C. Moens, M. Bensellam, E. Himpe, et al., Aspalathin protects insulin-producing β cells against glucotoxicity and oxidative stressinduced cell death, Mol. Nutr. Food Res. 64 (2020) 1901009. https://doi.org/10.1002/mnfr.201901009.

[33]

S. Fulda, K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy, Oncogene 25 (2006) 4798-4811. https://doi.org/10.1038/sj.onc.1209608.

[34]

R.P. Robertson, J. Harmon, P.O. Tran, et al., Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection, Diabetes 52 (2003) 581-587. https://doi.org/10.2337/diabetes.52.3.581.

[35]

V. Poitout, R.P. Robertson, Glucolipotoxicity: fuel excess and β-cell dysfunction, Endocr. Rev. 29 (1996) 351-366. https://doi.org/10.1210/er.2007-0023.

[36]

S. Lenzen, J. Drinkgern, M. Tiedge, Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues, Free Radic. Biol. Med. 20 (1996) 463-466. https://doi.org/10.1016/0891-5849(96)02051-5.

[37]

J.B. Pi, Q. Zhang, J.Q. Fu, ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function, Toxicol. Appl. Pharmacol. 244 (2010) 77-83. https://doi.org/10.1016/j.taap.2009.05.025.

Food Science and Human Wellness
Pages 1580-1589
Cite this article:
Shi R, Li X, Gao B, et al. Phenylethanoid glycosides from traditional Mongolian medicine Cymbaria daurica alleviate alloxan-induced INS-1 cells oxidative stress and apoptosis. Food Science and Human Wellness, 2023, 12(5): 1580-1589. https://doi.org/10.1016/j.fshw.2023.02.016

592

Views

16

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 24 May 2021
Revised: 04 June 2021
Accepted: 29 June 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return