AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Systematic functional analysis and potential application of a serine protease from cold-adapted Planococcus bacterium

Weijun LengaXiaoyun WuaXianghui QiaHongying LiubLi Yuana( )Ruichang Gaoa( )
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
Ocean College of Hebei Agriculture University, Qinhuangdao 066000, China
Show Author Information

Abstract

In this study, a gene encoding serine protease (PmSpr288) from cold-adapted bacterium, namely Planococcus maritimus XJ11, was cloned and overexpressed in Escherichia coli BL21 (DE3). Bioinformatics analysis revealed that PmSpr288 belongs to serine protease S8 superfamily with a classical catalytic triad comprised by the Asp49, His86 and Ser251. Moreover, PmSpr288 was found to be active over broad alkaline pH and low-moderate temperature, and exhibited wide range of protein substrate specificity. In addition, PmSpr288 was able to hydrolyze the meat proteins actin and myosin, and molecular docking results suggested that the crucial interaction between PmSpr288 and actin/myosin complexes was mainly occupied by hydrogen bonds. The muscle protein hydrolysates of silver carp prepared by PmSpr288 was shown to have antioxidant activity via DPPH radical scavenging assay, which presented an IC50 valve of 1.309 mg/mL. In conclusion, these characteristics imply that PmSpr288 has potential biotechnological application prospect for the production of bioactive peptides.

References

[1]

V.S. Baghel, R.D. Tripathi, P.W. Ramteke, et al., Psychrotrophic proteolytic bacteria from cold environment of Gangotri glacier, Western Himalaya, India, Enzyme Microb. Technol. 36 (2005) 654-659. http://doi.org/10.1016/j.enzmictec.2004.09.005.

[2]

J. Yang, J. Li, Z.M. Mai, et al., Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp SCSIO 20089, J. Biosci. Bioeng. 115 (2013) 628-632. http://doi.org/10.1016/j.jbiosc.2012.12.013.

[3]

D.I. Paredes, K. Watters, D.J. Pitman, et al., Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility, BMC Struct. Biol. 11 (2011). http://doi.org/10.1186/1472-6807-11-42.

[4]

J.Q. Pereira, A. Ambrosini, L.M.P. Passaglia, et al., A new cold-adapted serine peptidase from Antarctic Lysobacter sp A03: Insights about enzyme activity at low temperatures, Int. J. Biol. Macromol. 103 (2017) 854-862. http://doi.org/10.1016/j.ijbiomac.2017.05.142.

[5]

J. Furhan, P. Awasthi, S. Sharma, Biochemical characterization and homology modelling of cold-active alkophilic protease from Northwestern Himalayas and its application in detergent industry, Biocatal. Agric. Biotechnol. 17 (2019) 726-735. http://doi.org/https://doi.org/10.1016/j.bcab.2019.01.028.

[6]

Q.F. Wang, Y.H. Hou, Z. Xu, et al., Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp NJ276, Chem. Eng. J. 38 (2008) 362-368. http://doi.org/10.1016/j.bej.2007.07.025.

[7]

A. Mageswari, P. Subramanian, S. Chandrasekaran, et al., Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp, Food Chem. 217 (2017) 18-27. http://doi.org/10.1016/j.foodchem.2016.08.064.

[8]

B.P. Singh, S. Vij, S. Hati, Functional significance of bioactive peptides derived from soybean, Peptides 54 (2014) 171-179. http://doi.org/10.1016/j.peptides.2014.01.022.

[9]

D.J. Daroit, A. Brandelli, In vivo bioactivities of food protein-derived peptides – a current review, Curr. Opin. Food Sci. 39 (2021) 120-129. http://doi.org/https://doi.org/10.1016/j.cofs.2021.01.002.

[10]

W.K. Jung, P.J. Park, H.G. Byun, et al., Preparation of hoki (Johnius belengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase, Food Chem. 91 (2005) 333-340. http://doi.org/10.1016/j.foodchem.2004.06.016.

[11]

M. Zarei, B. Forghani, A. Ebrahimpour, et al., In vitro and in vivo antihypertensive activity of palm kernel cake protein hydrolysates: sequencing and characterization of potent bioactive peptides, Ind. Crops Prod. 76 (2015) 112-120. http://doi.org/https://doi.org/10.1016/j.indcrop.2015.06.040.

[12]

M. Chalamaiah, B.D. Kumar, R. Hemalatha, et al., Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review, Food Chem. 135 (2012) 3020-3038. http://doi.org/10.1016/j.foodchem.2012.06.100.

[13]

N.R.A. Halim, H.M. Yusof, N.M. Sarbon, Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review, Trends Food Sci. Technol. 51 (2016) 24-33. http://doi.org/https://doi.org/10.1016/j.tifs.2016.02.007.

[14]

I. Jemil, O. Abdelhedi, R. Nasri, et al., Novel bioactive peptides from enzymatic hydrolysate of Sardinelle (Sardinella aurita) muscle proteins hydrolysed by Bacillus subtilis A26, Food Res. Int. 100 (2017) 121-133. http://doi.org/10.1016/j.foodres.2017.06.018.

[15]

Ruthu, P.S.Murthy, A.K. Rai, et al., Fermentative recovery of lipids and proteins from freshwater fish head waste with reference to antimicrobial and antioxidant properties of protein hydrolysate, J. Food Sci. Technol. Mysore 51 (2014) 1884-1892. http://doi.org/10.1007/s13197-012-0730-z.

[16]

R. Gao, Q. Yu, Y. Shen, et al., Production, bioactive properties, and potential applications of fish protein hydrolysates: developments and challenges, Trends Food Sci. Technol. 110 (2021) 687-699. http://doi.org/https://doi.org/10.1016/j.tifs.2021.02.031.

[17]

J. Stack, P.R. Tobin, A. Gietl, et al., Seasonal variation in nitrogenous components and bioactivity of protein hydrolysates from Porphyra dioica, J. Appl. Phycol. 29 (2017) 2439-2450. http://doi.org/10.1007/s10811-017-1063-0.

[18]

R. Wu, C. Wu, D. Liu, et al., Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease, Food Chem. 248 (2018) 346-352. http://doi.org/10.1016/j.foodchem.2017.12.035.

[19]

M. Delgado-Garcia, A.C. Flores-Gallegos, M. Kirchmayr, et al., Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein, Electron. J. Biotechnol. 39 (2019) 52-60. http://doi.org/10.1016/j.ejbt.2019.03.001.

[20]

W.J. Leng, R.C. Gao, X.Y. Wu, et al., Genome sequencing of cold-adapted Planococcus bacterium isolated from traditional shrimp paste and protease identification, J. Sci. Food Agric. 12 (2021) 3225-3236. http://doi.org/10.1002/jsfa.10952.

[21]

P. Nizovoy, N. Bellora, S. Haridas, et al., Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica, FEMS Yeast Res. 21 (2021). http://doi.org/10.1093/femsyr/foaa056.

[22]

X.H. Qi, J.F. Zhu, J.H. Yun, et al., Enhanced xylitol production: expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell, J. Biosci. Bioeng. 122 (2016) 257-262. http://doi.org/10.1016/j.jbiosc.2016.02.009.

[23]

G. Zhang, H.M. Zabed, J. Yun, et al., Two-stage biosynthesis of D-tagatose from milk whey powder by an engineered Escherichia coli strain expressing L-arabinose isomerase from Lactobacillus plantarum, Bioresour. Technol. 305 (2020). http://doi.org/10.1016/j.biortech.2020.123010.

[24]

J. Hou, D. Han, Y. Zhou, et al., Identification and characterization of the gene encoding an extracellular protease from haloarchaeon Halococcus salifodinae, Microbiol. Res. 236 (2020). http://doi.org/10.1016/j.micres.2020.126468.

[25]

R. Gao, Y. Shen, W. Shu, et al., Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition, Food Funct. 11 (2020) 6987-6999. http://doi.org/10.1039/c9fo02772f.

[26]

R. Gao, W. Shu, Y. Shen, et al., Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway, J. Funct. Foods 72 (2020). http://doi.org/10.1016/j.jff.2020.104044.

[27]

R. Gao, T. Shi, Q. Sun, et al., Effects of l-arginine and l-histidine on heat-induced aggregation of fish myosin: bighead carp (Aristichthys nobilis), Food Chem. 295 (2019) 320-326. http://doi.org/https://doi.org/10.1016/j.foodchem.2019.05.095.

[28]

F. Li, B. Wang, B. Kong, et al., Decreased gelling properties of protein in mirror carp (Cyprinus carpio) are due to protein aggregation and structure deterioration when subjected to freeze-thaw cycles, Food Hydrocoll. 97 (2019) 105223. http://doi.org/https://doi.org/10.1016/j.foodhyd.2019.105223.

[29]

L. Yuan, Q. Chu, X.Y. Wu, et al., Anti-inflammatory and antioxidant activity of peptides from ethanol-soluble hydrolysates of sturgeon (Acipenser schrenckii) cartilage, Front. Nutr. 8 (2021). http://doi.org/10.3389/fnut.2021.689648.

[30]

F. Rivero-Pino, F. Javier Espejo-Carpio, E.M. Guadix, Evaluation of the bioactive potential of foods fortified with fish protein hydrolysates, Food Res. Int. 137 (2020). http://doi.org/10.1016/j.foodres.2020.109572.

[31]

R. Salwan, V. Sharma, M. Pal, et al., A. Gulati, Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp IHB B 5011(MN12), Int. J. Biol. Macromol. 107 (2018) 567-574. http://doi.org/10.1016/j.ijbiomac.2017.09.025.

[32]

G. Xie, Z. Shao, L. Zong, et al., Heterologous expression and characterization of a novel subtilisin-like protease from a thermophilic Thermus thermophilus HB8, Int. J. Biol. Macromol. 138 (2019) 528-535. http://doi.org/10.1016/j.ijbiomac.2019.07.101.

[33]

F. Sun, B. Kong, Q. Chen, et al., N-nitrosoamine inhibition and quality preservation of Harbin dry sausages by inoculated with Lactobacillus pentosus, Lactobacillus curvatus and Lactobacillus sake, Food Control 73 (2017) 1514-1521. http://doi.org/10.1016/j.foodcont.2016.11.018.

[34]

A. Perfumo, G.J.F. von Sass, E.L. Nordmann, et al., Discovery and characterization of a new cold-active protease from an extremophilic bacterium via comparative genome analysis and in vitro expression, Front. Microbiol. 11 (2020). http://doi.org/10.3389/fmicb.2020.00881.

[35]

J.H. Hao, M. Sun, Purification and characterization of a cold alkaline protease from a psychrophilic Pseudomonas aeruginosa HY1215, Appl. Biochem. Biotechnol. 175 (2015) 715-722. http://doi.org/10.1007/s12010-014-1315-2.

[36]

C.J. Lin, W.C. Tseng, T.H. Lin, et al., Characterization of a thermophilic L-rhamnose isomerase from Thermoanaerobacterium saccharolyticum NTOU1, J. Agric. Food. Chem. 58 (2010) 10431-10436. http://doi.org/10.1021/jf102063q.

[37]

M.O. Benmrad, E. Moujehed, M. Ben Elhoul, et al., Production, purification, and biochemical characterization of serine alkaline protease from Penicillium chrysogenium strain X5 used as excellent bio-additive for textile processing, Int. J. Biol. Macromol. 119 (2018) 1002-1016. http://doi.org/10.1016/j.ijbiomac.2018.07.194.

[38]

O.S. da Silva, E.M. de Almeida, A.H.F. de Melo, et al., Purification and characterization of a novel extracellular serine-protease with collagenolytic activity from Aspergillus tamarii URM4634, Int. J. Biol. Macromol. 117 (2018) 1081-1088. http://doi.org/10.1016/j.ijbiomac.2018.06.002.

[39]

K.S. Ibrahim, J. Muniyandi, S.K. Pandian, Purification and characterization of manganese-dependent alkaline serine protease from Bacillus pumilus TMS55, J. Microbiol. Biotechnol. 21 (2011) 20-27. http://doi.org/10.4014/jmb.1009.09001.

[40]

A.H. Deng, J. Wu, Y. Zhang, et al., Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp B001, Bioresour. Technol. 101 (2010) 7100-7106. http://doi.org/10.1016/j.biortech.2010.03.130.

[41]

S. Joshi, T. Satyanarayana, Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis, Bioresour. Technol. 131 (2013) 76-85. http://doi.org/10.1016/j.biortech.2012.12.124.

[42]

S.E. Tork, Y.E. Shahein, A.E. El-Hakim, et al., Purification and partial characterization of serine-metallokeratinase from a newly isolated Bacillus pumilus NRC21, Int. J. Biol. Macromol. 86 (2016) 189-196. http://doi.org/10.1016/j.ijbiomac.2016.01.060.

[43]

N. Fakhfakh-Zouari, N. Hmidet, A. Haddar, et al., A novel serine metallokeratinase from a newly isolated Bacillus pumilus A1 grown on chicken feather meal: biochemical and molecular characterization, Appl. Biochem. Biotechnol. 162 (2010) 329-344. http://doi.org/10.1007/s12010-009-8774-x.

[44]

F. Sun, Q. Li, H. Liu, et al., Purification and biochemical characteristics of the protease from Lactobacillus brevis R4 isolated from Harbin dry sausages, LWT-Food Sci. Technol. 113 (2019). http://doi.org/10.1016/j.lwt.2019.108287.

[45]

M. Ha, A.E.D. Bekhit, A. Carne, et al., Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins, Food Chem. 136 (2013) 989-998. http://doi.org/10.1016/j.foodchem.2012.09.034.

[46]

P. Huang, Z. Wang, X. Feng, et al., Promotion of fishy odor release by phenolic compounds through interactions with myofibrillar protein, Food Chem. (2022) 132852. http://doi.org/https://doi.org/10.1016/j.foodchem.2022.132852.

[47]

S. Qian, P. Dou, J. Wang, et al., Effect of MTGase on silver carp myofibrillar protein gelation behavior after peroxidation induced by peroxyl radicals, Food Chem. 349 (2021). http://doi.org/10.1016/j.foodchem.2021.129066.

[48]

Q. Cao, Y. Huang, Q.F. Zhu, et al., The mechanism of chlorogenic acid inhibits lipid oxidation: an investigation using multi-spectroscopic methods and molecular docking, Food Chem. 333 (2020). http://doi.org/10.1016/j.foodchem.2020.127528.

[49]

F. Sun, Q. Sun, H. Zhang, et al., Purification and biochemical characteristics of the microbial extracellular protease from Lactobacillus curvatus isolated from Harbin dry sausages, Int. J. Biol. Macromol. 133 (2019) 987-997. http://doi.org/10.1016/j.ijbiomac.2019.04.169.

[50]

X.Q. Wang, H.H. Yu, R.G. Xing, et al., Preparation and identification of antioxidative peptides from Pacific herring (Clupea pallasii) protein, Molecules 24 (2019) 17. http://doi.org/10.3390/molecules24101946.

[51]

I. Jemil, O. Abdelhedi, R. Nasri, et al., Novel bioactive peptides from enzymatic hydrolysate of sardinelle (Sardinella aurita) muscle proteins hydrolysed by Bacillus subtilis A26, Food Res. Int. 100 (2017) 121-133. http://doi.org/10.1016/j.foodres.2017.06.018.

[52]

K. Wang, L.H. Han, H. Hong, et al., Purification and identification of novel antioxidant peptides from silver carp muscle hydrolysate after simulated gastrointestinal digestion and transepithelial transport, Food Chem. 342 (2021). http://doi.org/10.1016/j.foodchem.2020.128275.

Food Science and Human Wellness
Pages 1751-1761
Cite this article:
Leng W, Wu X, Qi X, et al. Systematic functional analysis and potential application of a serine protease from cold-adapted Planococcus bacterium. Food Science and Human Wellness, 2023, 12(5): 1751-1761. https://doi.org/10.1016/j.fshw.2023.02.025

468

Views

13

Downloads

7

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 29 September 2021
Revised: 01 May 2022
Accepted: 21 May 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return