AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Antarctic krill antioxidant peptides show inferior IgE-binding ability and RBL-2H3 cell degranulation

Jie Dinga,bChunyan ZhucPengfei Jianga,bLibo Qia,bNa Suna,b( )Songyi Lina,b( )
National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
Ganzhou Quanbiao Biological Technology Co., Ltd., Ganzhou 341100, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Enzymatic hydrolysis, isolation, and purification might make a great deal of difference in antioxidant activity and antigenicity of peptide components. This study aimed to isolate and purify antioxidant peptide components from Antarctic krill and evaluate their allergenicity of them. Electron paramagnetic resonance (EPR) spectroscopy results indicated 310 kDa Antarctic krill hydrolysates (AKHs) had higher DPPH and ·OH radical scavenging rates. And the second component (N2-2) purified 310 kDa hydrolysate showed better ability to scavenge DPPH and ·OH radicals (P < 0.05), which were (47.43 ± 2.18)% and (34.33 ± 1.25)%, respectively. Additionally, indirect-ELISA results revealed that N2-1 had a weaker ability to bind specific IgE and that N2-2 had a lower binding capability to specific IgG1 (P < 0.05). And N2-2 had a higher EC50 value of (5.29 ± 0.95) ng/mL (P < 0.05) in cell degranulation assay, which was about 13.80 times that of Antarctic krill. Therefore, N2-2 might be the potential source of the antioxidant peptides with lower allergenicity.

References

[1]

A.K. Verma, S. Kumar, A. Sharma, Allergic manifestation by black gram (Vigna mungo) proteins in allergic patients, BALB/c mice and RBL-2H3 cells, Int. Immunopharmacol. 23(1) (2014) 92-103. https://doi.org/10.1016/j.intimp.2014.08.016.

[2]

R.S. Geha, Allergy and hypersensitivity: nature versus nurture in allergy and hypersensitivity, Curr. Opin. Immunol. 15(6) (2003) 603-608. https://doi.org/10.1016/j.coi.2003.09.017.

[3]

G. Reese, C.B. Daul, S.B. Lehrer, Antigenic analysis (IgE and monoclonal antibodies) of the major shrimp allergen Pen a 1 (tropomyosin) from Penaeus aztecus, Int. Arch. Allergy Imm. 107(1/2/3) (1995) 245-247. https://doi.org/10.1159/000236992.

[4]

P.M. Cecilia, A.P. Eduardo, Why is there a greater incidence of allergy to the tropomyosin of certain animals than to that of others?, Med. Hypotheses. 69(5) (2007) 1070-1073. https://doi.org/10.1016/j.mehy.2006.12.060.

[5]

M. Albrecht, S. Alessandri, A. Conti, et al., High level expression, purification and physico- and immunochemical characterisation of recombinant Pen a 1: a major allergen of shrimp, Mol. Nutr. Food Res. 52 (2008) S186-S195. https://doi.org/10.1002/mnfr.200700424.

[6]

R. Ayuso, G. Grishina, M.D. Ibáñez, et al., Sarcoplasmic calcium-binding protein is an EF-hand-type protein identified as a new shrimp allergen, J. Allergy Clin. Immun. 124(1) (2009) 114-120. https://doi.org/10.1016/j.jaci.2009.04.016.

[7]

B.P. Wang, Z.X. Li, L.N. Zheng, et al., Identification and characterization of a new IgE-binding protein in mackerel (Scomber japonicus) by MALDI-TOF-MS, J. Ocean U. China 10(1) (2011) 93-98. https://doi.org/10.1007/s11802-011-1793-6.

[8]

S.P. Wang, C.D. Julio, R. Eugene, et al., Penaeus monodon tropomyosin induces CD4 T-cell proliferation in shrimp-allergic patients, Hum. Immunol. 73(4) (2012) 426-431. https://doi.org/10.1016/j.humimm.2011.12.019.

[9]

S. Nicol, J. Foster, S. Kawaguchi, The fishery for Antarctic krill-recent developments, Fish Fish. 13(1) (2012) 30-40. https://doi.org/10.1111/j.1467-2979.2011.00406.x.

[10]

X.M. Ma, C.Y. Liu, C.W. Wang, et al., Effects of three products from Antarctic krill on the nitrogen balance, growth, and antioxidation status of rats, Food Sci. Nutr. 7(3) (2019) 2760-2768. https://doi.org/10.1002/fsn3.1140.

[11]

L.H. Han, X.Z. Mao, K. Wang, et al., Phosphorylated peptides from Antarctic krill (Euphausia superba) ameliorated osteoporosis by activation of osteogenesis-related MAPKs and PI3K/AKT/GSK-3 beta pathways in dexamethasone-treated mice, J. Funct. Foods 47 (2018) 447-456. https://doi.org/10.1016/j.jff.2018.06.004.

[12]

A. Hatanaka, H. Miyahara, K.I. Suzuki, et al., Isolation and identification of antihypertensive peptides from Antarctic krill tail meat hydrolysate, J. Food Sci. 74(4) (2009) H116-H120. https://doi.org/10.1111/j.1750-3841.2009.01138.x.

[13]

W. Ji, C.H. Zhang, H.W. Ji, Two novel bioactive peptides from Antarctic krill with dual angiotensin converting enzyme and dipeptidyl peptidase Ⅳ inhibitory activities, J. Food Sci. 82(7) (2017) 1742-1749. https://doi.org/10.1111/1750-3841.13735.

[14]

L. Zhao, B.Z. Yin, Q. Liu, et al., Purification of antimicrobial peptide from Antarctic krill (Euphausia superba) and its function mechanism, J. Ocean U. China 12(3) (2013) 484-490. https://doi.org/10.1007/s11802-013-2180-2.

[15]

Y. Wang, S. Wang, J. Wang, et al., Preparation and anti-osteoporotic activities in vivo of phosphorylated peptides from Antarctic krill (Euphausia superba), Peptides 68 (2015) 239-245. https://doi.org/10.1016/j.peptides.2014.10.004.

[16]

D. Chao, R. He, S. Jung, et al., Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates, Food Res. Int. 54(2) (2013) 1528-1534. https://doi.org/10.1016/j.foodres.2013.09.020.

[17]

J.P.B. Oliveira, A.M. Candreva, G. Rizzo, et al., Allergenicity reduction of cow’s milk proteins using latex peptidases, Food Chem. 284 (2019) 245-253. https://doi.org/10.1016/j.foodchem.2019.01.123.

[18]

K. Shimakura, Y. Tonomura, Y. Hamada, et al., Allergenicity of crustacean extractives and its reduction by protease digestion, Food Chem. 91(2) (2005) 247-253. https://doi.org/10.1016/j.foodchem.2003.11.010.

[19]

O.T. Toomer, A.B. Do, T.J. Fu, et al., Digestibility and immunoreactivity of shrimp extracts using an in vitro digestibility model with pepsin and pancreatin, J. Food Sci. 80(7) (2015) T1633-T1639. https://doi.org/10.1111/1750-3841.12917.

[20]

G.R. Araujo, L. Aglas, E.R. Vaz, et al., TGFβ1 mimetic peptide modulates immune response to grass pollen allergens in mice, Allergy 75(4) (2020) 882-891. https://doi.org/10.1111/all.14108.

[21]

T. Rispens, N.I.L. Derksen, S.P. Commins, et al., IgE production to α-Gal is accompanied by elevated levels of specific IgG1 antibodies and low amounts of IgE to blood group B, PLoS One 8(2) (2013) e55566. https://doi.org/10.1371/journal.pone.0055566.

[22]

W.G. Shreffler, D.A. Lencer, L. Bardina, et al., IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2, J. Allergy Clin. Immun. 116(4) (2015) 893-899. https://doi.org/10.1016/j.jaci.2005.06.033.

[23]

M.P.O. Nunes, M.F. van Tilburg, E.O.P.Tramontina Florean, et al., Detection of serum and salivary IgE and IgG1 immunoglobulins specific for diagnosis of food allergy, PLoS One 14(4) (2019) 1-13. https://doi.org/10.1371/journal.pone.0214745.

[24]

J. Ding, H.P. Ju, L.M. Zhong, et al., Reducing the allergenicity of pea protein based on the enzyme action of alcalase, Food Funct. 12(13) (2021) 5940-5948. https://doi.org/10.1039/d1fo00083g.

[25]

E. Passante, N. Frankish, The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell, Inflamm. Res. 58(11) (2009) 737-745. https://doi.org/10.1007/s00011-009-0074-y.

[26]

T.T. Wang, S.Y. Lin, P.B. Cui, et al., Antarctic krill derived peptide as a nanocarrier of iron through the gastrointestinal tract, Food Biosci. 36 (2020) 100657. https://doi.org/10.1016/j.fbio.2020.100657.

[27]

J. Ding, R. Liang, Y.Y. Yang, et al., Optimization of pea protein hydrolysate preparation and purification of antioxidant peptides based on an in silico analytical approach, LWT-Food Sci. Technol. 123 (2020) 109126. https://doi.org/10.1016/j.lwt.2020.109126.

[28]

N. Sun, T.T. Wang, D. Wang, et al., Antarctic krill derived nonapeptide as an effective iron–binding ligand for facilitating iron absorption via the small intestine, J. Agr. Food Chem. 68(40) (2020) 11290-11300. https://doi.org/10.1021/acs.jafc.0c03223.

[29]

Y. Zhai, G. Shu, X. Zhu, et al., Identification of an intestine-specific promoter and inducible expression of bacterial α-galactosidase in mammalian cells by alacoperon system, J. Anim. Sci. Biotechno. 4(1) (2012) 65-74. https://doi.org/10.1186/2049-1891-3-32.

[30]

L. Xue, Y. Li, T. Li, et al., Phosphorylation and enzymatic hydrolysis with alcalase and papain effectively reduce allergic reactions to gliadins in normal mice, J. Agr. Food Chem. 67(22) (2019) 6313-6323. https://doi.org/10.1021/acs.jafc.9b00569.

[31]

Y. Sheng, X.Z. Qi, Y.F. Liu, et al., Subchronic toxicity study in vivo and allergenicity study in vitro for genetically modified rice that expresses pharmaceutical protein (human serum albumin), Food Chem. Toxicol. (2014) 242-246. https://doi.org/10.1016/j.fct.2014.07.030.

[32]

N.L. Marsteller, R.E. Goodman, K. Andoh-Kumi, et al., Evaluating the potential allergenicity of dietary proteins using model strong to non-allergenic proteins in germ-free mice, Food Chem. Toxicol. 141 (2020) 111398. https://doi.org/10.1016/j.fct.2020.111398.

[33]

N. Sun, J. Wang, C. Zhou, et al., Cell-based immunological assay: complementary applications in evaluating the allergenicity of foods with FAO/WHO guidelines, Food Res. Int. 62 (2014) 735-745. https://doi.org/10.1016/j.foodres.2014.04.033.

[34]

J.A. Kang, H. Kim, Y.R. Nam, et al., Gamma-irradiated black ginseng extract inhibits mast cell degranulation and suppresses atopic dermatitis-like skin lesions in mice, Food Chem. Toxicol. 111 (2018) 133-143. https://doi.org/10.1016/j.fct.2017.11.006.

[35]

M.X. Wei, L. Tang, Q.L. Yang, et al., Membrane separation and antioxidant activity research of peanut peptides, Appl. Mech. Mater. 209 (2012) 2009-2012. https://doi.org/10.4028/www.scientific.net/AMM.209-211.2009.

[36]

D. Wu, M.Q. Li, J. Ding, et al., Structure-activity relationship and pathway of antioxidant shrimp peptides in a PC12 cell model, J. Funct. Foods 70 (2020) 103978. https://doi.org/10.1016/j.jff.2020.103978.

[37]

J. Chudzik-Kozowska, E. Wasilewska, D. Zlotkowska, Evaluation of immunoreactivity of pea (Pisum sativum) albumins in BALB/c and C57BL/6 mice, J. Agr. Food Chem. 68(13) (2020) 3891-3902. https://doi.org/10.1021/acs.jafc.0c00297.

[38]

P.J. García-Moreno, R. Pérez-Gálvez, F. Javier Espejo-Carpio, et al., Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: effect of enzymatic treatment and degree of hydrolysis, J. Sci. Food Agr. 97(1) (2016) 299-308. https://doi.org/10.1002/jsfa.7731.

[39]

P. Tong, S.G. Chen, J.Y. Gao, et al., Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a BALB/c mouse model, Food Chem. Toxicol. 111 (2018) 275-283. https://doi.org/10.1016/j.fct.2017.11.026.

[40]

A. Yang, C. Long, J. Xia, et al., Enzymatic characterisation of the immobilised alcalase to hydrolyse egg white protein for potential allergenicity reduction, J. Sci. Food Agr. (2016) 199-206. https://doi.org/10.1002/jsfa.7712.

[41]

N. Okahashi, M. Nakata, Y. Hirose, et al., Streptococcal H2O2 inhibits IgE-triggered degranulation of RBL-2H3 mast cell/basophil cell line by inducing cell death, PLoS One 15(4) (2020) e0231101. https://doi.org/10.1371/journal.pone.0231101.

[42]

P. Meinlschmidt, D. Sussmann, U. Schweiggert-Weisz, et al., Enzymatic treatment of soy protein isolates: effects on the potential allergenicity, technofunctionality, and sensory properties, Food Sci. Nutr. 4(1) (2016) 11-23. https://doi.org/10.1002/fsn3.253.

[43]

S.K. Shriver, W.W. Yang, Thermal and nonthermal methods for food allergen control, Food Eng. Rev. 3(1) (2011) 26-43. https://doi.org/10.1007/s12393-011-9033-9.

Food Science and Human Wellness
Pages 1772-1778
Cite this article:
Ding J, Zhu C, Jiang P, et al. Antarctic krill antioxidant peptides show inferior IgE-binding ability and RBL-2H3 cell degranulation. Food Science and Human Wellness, 2023, 12(5): 1772-1778. https://doi.org/10.1016/j.fshw.2023.02.028

586

Views

41

Downloads

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 23 October 2021
Revised: 22 December 2021
Accepted: 05 February 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return