AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ultrathin metal-organic framework nanosheets (Cu-TCPP)-based isothermal nucleic acid amplification for food allergen detection

Jiale Gaoa,1Xiaodong Sunb,1Yongxin LiuaBing NiuaQin Chena( )Xueen Fangc( )
Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China

1 Contribute equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

The rapid and accurate detection of peanuts and soybeans allergen is important to the food safety. In this study, Cu-TCPP nanosheet, a kind of ultra-thin metal-organic framework (MOF) was synthesized and applied in loop-mediated isothermal amplification (named Cu-TCPP@LAMP), which can inhibit the non-specific amplification by absorbing and precise temperature releasing of single primer. As thus, Cu-TCPP@LAMP can achieve high sensitivity and specific amplification of the target gene. As a result, peanut and soybean allergens genes contained in food were successfully detected with a favorable detection sensitivity (5 ng/μL for peanuts and 10 ng/μL for soybeans) and reliable repeatability (The coefficient of variation was 3.38% for peanuts and 3.33% for soybeans). Moreover, the established method was utilized for detection of several commercial products, and had a high consistency with the standard method. Apart from food allergens, this novel assay can be widely used in other areas, such as pathogen detection, tumor nucleic acid detection and so on.

References

[1]

Y. Shahali, M. Dadar, Plant food allergy: Influence of chemicals on plant allergens, Food Chem. Toxicol. 115 (2018) 365-374. https://doi.org/10.1016/j.fct.2018.03.032.

[2]

S.A. Bock, A. Muñoz-Furlong, H.A. Sampson, Fatalities due to anaphylactic reactions to foods, J. Allergy Clin. Immunol. 107(1) (2001) 191-193. https://doi.org/10.1067/mai.2001.112031.

[3]

S.H. Sicherer, H.A. Sampson, Food allergy: epidemiology, pathogenesis, diagnosis, and treatment, J. Allergy Clin. Immunol. 133(2) (2014) 291-307. https://doi.org/10.1016/j.jaci.2013.11.020.

[4]

A. Urisu, M. Ebisawa, K. Ito, et al., Japanese Guideline for Food Allergy 2014, Allergology International: Official Journal of the Japanese Society of Allergology. 63(3) (2014) 399-419. https://doi.org/10.2332/allergolint.14-RAI-0770.

[5]

J.A. Boyce, A. Assa'ad, A.W. Burks, et al., Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report, J. Allergy Clin. Immunol. 126(6) (2010) 1105-1118. https://doi.org/10.1016/j.jaci.2010.10.008.

[6]

B. Cabanillas, U. Jappe, N. Novak, Allergy to peanut, soybean, and other legumes: recent advances in allergen characterization, stability to processing and IgE cross-reactivity, Mol. Nutr. Food Res. 62(1) (2018) 1700446. https://doi.org/10.1002/mnfr.201700446.

[7]

C.F. Macdougall, A.J. Cant, A.F. Colver, How dangerous is food allergy in childhood? The incidence of severe and fatal allergic reactions across the UK and Ireland, Arch. Dis. Child. 86(4) (2002) 236-239. https://doi.org/10.1136/adc.86.4.236.

[8]

A. Vereda, M.V. Hage, S. Ahlstedt, et al., Peanut allergy: clinical and immunologic differences among patients from 3 different geographic regions, J. Allergy Clin. Immunol. 127(3) (2011) 603-607. https://doi.org/10.1016/j.jaci.2010.09.010.

[9]

Y. Katz, P. Gutierrez-Castrellon, M.G. Gonzalez, et al., A comprehensive review of sensitization and allergy to soy-based products, Clin. Rev. Allergy Immunol. 46(3) (2014) 272-281. https://doi.org/10.1007/s12016-013-8404-9.

[10]

T. Notomi, H. Okayama, H. Masubuchi, et al., Loop-mediated isothermal amplification of DNA, Nucleic Acids Res. 28(12) (2000) E63. https://doi.org/10.1093/nar/28.12.e63.

[11]

M. Parida, S. Sannarangaiah, P.K. Dash, et al., Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases, Rev. Med. Virol. 18(6) (2008) 407-421. https://doi.org/10.1002/rmv.593.

[12]

P.C. Foo, A.B. Nurul Najian, N.A. Muhamad, et al., Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: a comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from faecal sample, BMC Biotechnol. 20(1) (2020) 34. https://doi.org/10.1186/s12896-020-00629-8.

[13]

H. Wang, Z. Ma, J. Qin, et al., A versatile loop-mediated isothermal amplification microchip platform for Streptococcus pneumoniae and Mycoplasma pneumoniae testing at the point of care, Biosens. Bioelectron. 126 (2019) 373-380. https://doi.org/10.1016/j.bios.2018.11.011.

[14]

T.P. Tung, L.N. Yoon, Paper-based all-in-one origami microdevice for nucleic acid amplification testing for rapid colorimetric identification of live cells for point-of-care testing, Anal. Chem. 91(17) (2019) 11013-11022. https://doi.org/10.1021/acs.analchem.9b01263.

[15]

L. Jeong-Eun, M. Hyoyoung, K. Se-Ri, et al., A colorimetric Loop-mediated isothermal amplification (LAMP) assay based on HRP-mimicking molecular beacon for the rapid detection of Vibrio parahaemolyticus, Biosens. Bioelectron. 151 (2020) 111968. https://doi.org/10.1016/j.bios.2019.111968.

[16]

S.C. Sheu, M.T. Yu, Y.Y. Lien, et al., Development of a specific isothermal nucleic acid amplification for the rapid and sensitive detection of shrimp allergens in processed food, Food Chem. 332 (2020) 127389. https://doi.org/10.1016/j.foodchem.2020.127389.

[17]

S. Fu, G. Qu, S. Guo, et al., Applications of loop-mediated isothermal DNA amplification, Appl. Biochem. Biotechnol. 163(7) (2011) 845-850. https://doi.org/10.1007/s12010-010-9088-8.

[18]

R.J. Meagher, A. Priye, Y.K. Light, et al., Impact of primer dimers and self-amplifying hairpins on reverse transcription loop-mediated isothermal amplification detection of viral RNA, The Analyst 143(8) (2018) 1924-1933. https://doi.org/10.1039/c7an01897e.

[19]

L. Wei, H. Simo, L. Ningwei, et al., Establishment of an accurate and fast detection method using molecular beacons in loop-mediated isothermal amplification assay, Sci. Rep. 7 (2017) 40125. https://doi.org/10.1038/srep40125.

[20]

Y. Kimura, M.J. de Hoon, S. Aoki, et al., Optimization of turn-back primers in isothermal amplification, Nucleic Acids Res. 39(9) (2011) e59. https://doi.org/10.1093/nar/gkr041.

[21]

X. Ye, X.E. Fang, X.X. Li, et al., Gold nanoparticle-mediated nucleic acid isothermal amplification with enhanced specificity, Analytica Chimica Acta. 1043 (2018) 150-157. https://doi.org/10.1016/j.aca.2018.09.016.

[22]

Q.Y. Lin, X. Ye, Z.P. Huang, et al., Graphene oxide-based suppression of nonspecificity in loop-mediated isothermal amplification enabling the sensitive detection of cyclooxygenase-2 mRNA in colorectal cancer, Anal. Chem. 91(24) (2019) 15694-15702. https://doi.org/10.1021/acs.analchem.9b03861.

[23]

P. Gao, R. Lou, X. Liu, et al., Rational design of a dual-layered metal–organic framework nanostructure for enhancing the cell imaging of molecular beacons, Anal. Chem. 93(13) (2021) 5437-5441. https://doi.org/10.1021/acs.analchem.0c05060.

[24]

W. Qiu, F. Gao, N. Yano, et al., Specific coordination between Zr-MOF and phosphate-terminated DNA coupled with strand displacement for the construction of reusable and ultrasensitive aptasensor, Anal. Chem. 92(16) (2020) 11332-11340. https://doi.org/10.1021/acs.analchem.0c02018.

[25]

X. Liu, Z. Yan, Y. Zhang, et al., Two-dimensional metal–organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing, ACS Nano 13(5) (2019) 5222-5230. https://doi.org/10.1021/acsnano.8b09501.

[26]

J. Ma, G. Chen, W. Bai, et al., Amplified electrochemical hydrogen peroxide sensing based on Cu-porphyrin metal–organic framework nanofilm and G-Quadruplex-Hemin DNAzyme, ACS Appl. Mater. Interfaces 12(52) (2020) 58105-58112. https://doi.org/10.1021/acsami.0c09254.

[27]

Y. Qin, Y. Wan, J. Guo, et al., Two-dimensional metal-organic framework nanosheet composites: preparations and applications, Chin. Chem. Lett. 33(2) (2022) 693-702. https://doi.org/10.1016/j.cclet.2021.07.013.

[28]

M.X. Wu, Y.W. Yang, Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy, Adv. Mater. 29(23) (2017) 1606134. https://doi.org/10.1002/adma.201606134.

[29]

M. Zhao, Y. Huang, Y. Peng, et al., Two-dimensional metal-organic framework nanosheets: synthesis and applications, Chem. Soc. Rev. 47(16) (2018) 6267-6295. https://doi.org/10.1039/c8cs00268a.

[30]

M. Zhao, Y. Wang, Q. Ma, et al., Ultrathin 2D metal-organic framework nanosheets, Adv. Mater. 27(45) (2015) 7372-7378. https://doi.org/10.1002/adma.201503648.

[31]

B. Li, X. Wang, L. Chen, et al., Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers, Theranostics 8(15) (2018) 4086-4096. https://doi.org/10.7150/thno.25433.

[32]

X. Liu, Z. Yan, Y. Zhang, et al., Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing, ACS Nano 13(5) (2019) 5222-5230. https://doi.org/10.1021/acsnano.8b09501.

[33]

Q. Qiu, H. Chen, S. Ying, et al., Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP), Mikrochim Acta. 186(2) (2019) 93. https://doi.org/10.1007/s00604-019-3226-y.

[34]

Q. Yang, L.Y. Zhou, Y.X. Wu, et al., A two dimensional metal-organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics, Analytica Chimica Acta 1020 (2018) 1-8. https://doi.org/10.1016/j.aca.2018.02.058.

[35]

P. Wu, X. Ye, D. Wang, et al., A novel CRISPR/Cas14a system integrated with 2D porphyrin metal-organic framework for microcystin-LR determination through a homogeneous competitive reaction, J. Hazardous Mater. 424(Pt D) (2022) 127690. https://doi.org/10.1016/j.jhazmat.2021.127690.

[36]

K. Hirakawa, M. Taguchi, S. Okazaki, Relaxation process of photoexcited meso-naphthylporphyrins while Interacting with DNA and singlet oxygen generation, J. Physical Chem. B. 119(41) (2015) 13071-13078. https://doi.org/10.1021/acs.jpcb.5b08025.

[37]

X. Feng, J. Liu, DNA binding and in vitro anticarcinogenic activity of a series of newfashioned Cu(Ⅱ)-complexes based on tricationic metalloporphyrin salicyloylhydrazone ligands, J. Inorg. Biochem. 178 (2018) 1-8. https://doi.org/10.1016/j.jinorgbio.2017.09.024.

[38]

A. Rioz-Martínez, J. Oelerich, N. Ségaud, et al., DNA-accelerated catalysis of carbene-transfer reactions by a DNA/cationic iron porphyrin hybrid, Angew. Chem. Int. Ed. Engl. 55(45) (2016) 14136-14140. https://doi.org/10.1002/anie.201608121.

[39]

M. Zhang, H.V. Powell, S.R. Mackenzie, et al., Kinetics of porphyrin adsorption and DNA-assisted desorption at the silica−water interface, Langmuir 26(6) (2010) 4004-4012. https://doi.org/10.1021/la903438p.

[40]

R. Kuroda, E. Takahashi, C.A. Austin, et al., DNA binding and intercalation by novel porphyrins: role of charge and substituents probed by DNase I footprinting and topoisomerase I unwinding, FEBS Lett. 262(2) (1990) 293-298. https://doi.org/10.1016/0014-5793(90)80213-3.

[41]

L.G. Marzilli, G. Petho, M. Lin, et al., Tentacle porphyrins: DNA interactions, J. American Chem. Society 114(19) (1992) 7575-7577. https://doi.org/10.1021/ja00045a047.

[42]

Y. Shang, J. Sun, Y. Ye, et al., Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection, Crit. Rev. Food Sci. Nutr. 60(2) (2020) 201-224. https://doi.org/10.1080/10408398.2018.1518897.

[43]

Y.P. Wong, S. Othman, Y.L. Lau, et al., Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms, J. Appl. Microb. 124(3) (2018) 626-643. https://doi.org/10.1111/jam.13647.

[44]

K.H. Roux, Optimization and troubleshooting in PCR, Cold Spring Harbor Protocols 2009(4) (2009). https://doi.org/10.1101/pdb.ip66.

[45]

M. Wang, D. Chen, W. Wu, et al., Analytical performance evaluation of five RT-PCR kits for severe acute respiratory syndrome coronavirus 2, J. Clin. Labor. Analysis. 35(1) (2021) e23643. https://doi.org/10.1002/jcla.23643.

[46]

X. Wang, H. Yao, X. Xu, et al., Limits of detection of 6 approved RT-PCR kits for the novel SARS-coronavirus-2 (SARS-CoV-2), Clin. Chem. 66(7) (2020) 977-979. https://doi.org/10.1093/clinchem/hvaa099.

[47]

L. Xu, J. Duan, J. Chen, et al., Recent advances in rolling circle amplification-based biosensing strategies-A review, Anal. Chim. Acta. 1148 (2021) 238187. https://doi.org/10.1016/j.aca.2020.12.062.

[48]

F. Ma, C.C. Li, C.Y. Zhang, Nucleic acid amplification-integrated single-molecule fluorescence imaging for in vitro and in vivo biosensing, Chem. Commun. (Camb). (2021) 13415-13428. https://doi.org/10.1039/d1cc04799j.

[49]

H.Q. Wang, W.Y. Liu, Z. Wu, et al., Homogeneous label-free genotyping of single nucleotide polymorphism using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection, Anal. Chem. 83(6) (2011) 1883-1889. https://doi.org/10.1021/ac200138v.

[50]

Y. Zhai, X. Zhu, B. Xu, et al., Dual-labeling ratiometric electrochemical strategy initiated with ISDPR for accurate screening MecA gene, Biosens. Bioelectron. 197 (2021) 113772. https://doi.org/10.1016/j.bios.2021.113772.

[51]

D. Yuan, X. Fang, Y. Liu, et al., A hybridization chain reaction coupled with gold nanoparticles for allergen gene detection in peanut, soybean and sesame DNAs, Analyst 144(12) (2019) 3886-3891. https://doi.org/10.1039/c9an00394k.

[52]

R. Zhou, Z. Zeng, R. Sun, et al., Traditional and new applications of the HCR in biosensing and biomedicine, Analyst 146(23) (2021) 7087-7103. https://doi.org/10.1039/d1an01371h.

[53]

J. Liu, Y. Zhang, H. Xie, et al., Applications of catalytic hairpin assembly reaction in biosensing, Small 15(42) (2019) e1902989. https://doi.org/10.1002/smll.201902989.

Food Science and Human Wellness
Pages 1788-1798
Cite this article:
Gao J, Sun X, Liu Y, et al. Ultrathin metal-organic framework nanosheets (Cu-TCPP)-based isothermal nucleic acid amplification for food allergen detection. Food Science and Human Wellness, 2023, 12(5): 1788-1798. https://doi.org/10.1016/j.fshw.2023.02.031

567

Views

31

Downloads

6

Crossref

3

Web of Science

4

Scopus

1

CSCD

Altmetrics

Received: 29 November 2021
Revised: 27 December 2021
Accepted: 13 May 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return