AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Per1/Per2 double knockout transcriptome analysis reveals circadian regulation of hepatic lipid metabolism

Yiran BuSi ChenMengcheng RuanLibang WuHualin WangNa LiXiuju ZhaoXiaoli YuZhiguo Liu( )
Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Scope

Circadian disorder and high-fat diet (HFD) can disturb lipid metabolism homeostasis and may promote the development of various metabolic diseases. The relationship between them is of great concern. This study aimed to explore the effects of Per1/Per2 double knockout (DKO) on hepatic lipid metabolism in mice under HFD and HFD with docosahexaenoic acid (DHA) substitution.

Methods and results

Both wild type (WT) and DKO male C57BL/6 mice were fed with normal chow diet (CON), HFD, or HFD with DHA substitution (AO) for 15 weeks. At the end of the experiment, mice were sacrificed at zeitgeber time (ZT) 0 (7:00 am) or ZT12 (7:00 pm). Pathological indicators were determined using histological and biochemical methods. Hepatic transcriptome sequencing analysis showed that DKO mice exhibited multiple dysfunctions in diurnal rhythm, drug metabolism, cell cycle, cancer pathways, and lipid metabolism. HFD had greater effects on fatty acid oxidation and cholesterol synthesis and metabolism in Per1-/-Per2-/- mice, which was improved by DHA substitution.

Conclusions

Per1/Per2 played an important role in the circadian regulation of hepatic lipid metabolism, and DKO mice were more sensitive to HFD. DHA can improve circadian-related lipid metabolism disruption induced by HFD in mice.

References

[1]

A. Jagannath, L. Taylor, Z. Wakaf, et al., The genetics of circadian rhythms, sleep and health, Hum. Mol. Genet. 26 (2017) R128-R138. https://doi.org/10.1093/hmg/ddx240.

[2]

J.P. Pett, A. Korencic, F. Wesener, et al., Feedback loops of the mammalian circadian clock constitute repressilator, PLoS Comput. Biol. 12 (2016) e1005266. https://doi.org/10.1371/journal.pcbi.1005266.

[3]

J.A. Mohawk, C.B. Green, J.S. Takahashi, Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci. 35 (2012) 445-462. https://doi.org/10.1146/annurev-neuro-060909-153128.

[4]

U.S. Udoh, J.A. Valcin, K.L. Gamble, et al., The molecular circadian clock and alcohol-induced liver injury, Biomolecules 5 (2015) 2504-2537. https://doi.org/10.3390/biom5042504.

[5]

Y. Liu, Q. Li, H. Wang, et al., Fish oil alleviates circadian bile composition dysregulation in male mice with NAFLD, J. Nutr. Biochem. 69 (2019) 53-62. https://doi.org/10.1016/j.jnutbio.2019.03.005.

[6]

J. Li, L. Wei, C. Zhao, et al., Resveratrol maintains lipid metabolism homeostasis via one of the mechanisms associated with the key circadian regulator bmal1, Molecules 24 (2019). https://doi.org/10.3390/molecules24162916.

[7]

H. Li, X.H. Yu, X. Ou, et al., Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis, Prog. Lipid Res. 83 (2021) 101109. https://doi.org/10.1016/j.plipres.2021.101109.

[8]

J. Luo, H. Yang, B.L. Song, Mechanisms and regulation of cholesterol homeostasis, Nat. Rev. Mol. Cell Biol. 21 (2020) 225-245. https://doi.org/10.1038/s41580-019-0190-7.

[9]

F.W. Turek, C. Joshu, A. Kohsaka, et al., Obesity and metabolic syndrome in circadian clock mutant mice, Science 308 (2005) 1043-1045. https://doi.org/10.1126/science.1108750.

[10]

S. Shimba, N. Ishii, Y. Ohta, et al., Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 12071-12076. https://doi.org/10.1073/pnas.0502383102.

[11]

K. Kim, K. Boo, Y.S. Yu, et al., RORalpha controls hepatic lipid homeostasis via negative regulation of PPARgamma transcriptional network, Nat. Commun. 8 (2017) 162. https://doi.org/10.1038/s41467-017-00215-1.

[12]

B. Grimaldi, M.M. Bellet, S. Katada, et al., PER2 controls lipid metabolism by direct regulation of PPARgamma, Cell Metab. 12 (2010) 509-520. https://doi.org/10.1016/j.cmet.2010.10.005.

[13]

M.J. Costa, A.Y. So, K. Kaasik, et al., Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate, J. Biol. Chem. 286 (2011) 9063-9070. https://doi.org/10.1074/jbc.M110.164558.

[14]

J. Husse, S.C. Hintze, G. Eichele, et al., Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption, PLoS One 7 (2012) e52983. https://doi.org/10.1371/journal.pone.0052983.

[15]

B. Zheng, U. Albrecht, K. Kaasik, et al., Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock, Cell 105 (2001) 683-694. https://doi.org/10.1016/s0092-8674(01)00380-4.

[16]

T. Wang, P. Yang, Y. Zhan, et al., Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice, Toxicology 314 (2013) 193-201. https://doi.org/10.1016/j.tox.2013.09.009.

[17]

A. Shetty, J.W. Hsu, P.P. Manka, et al., Role of the circadian clock in the metabolic syndrome and nonalcoholic fatty liver disease, Dig. Dis. Sci. 63 (2018) 3187-3206. https://doi.org/10.1007/s10620-018-5242-x.

[18]

J. Liu, L. Han, L. Zhu, et al., Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats, Lipids Health Dis. 15 (2016) 27. https://doi.org/10.1186/s12944-016-0194-7.

[19]

A. Ferramosca and V. Zara, Modulation of hepatic steatosis by dietary fatty acids, World J. Gastroenterol. 20 (2014) 1746-1755. https://doi.org/10.3748/wjg.v20.i7.1746.

[20]

J.A. Greco, J.E. Oosterman, D.D. Belsham, Differential effects of omega-3 fatty acid docosahexaenoic acid and palmitate on the circadian transcriptional profile of clock genes in immortalized hypothalamic neurons, Am. J. Physiol. Regul. Integr. Comp. Physiol. 307 (2014) R1049-1060. https://doi.org/10.1152/ajpregu.00100.2014.

[21]

R. Chen, Z. Zuo, Q. Li, et al., DHA substitution overcomes high-fat diet-induced disturbance in the circadian rhythm of lipid metabolism, Food Funct. 11 (2020) 3621-3631. https://doi.org/10.1039/c9fo02606a.

[22]

H. Wang, Y. Cai, Y. Shao, et al., Fish oil ameliorates high-fat diet induced male mouse reproductive dysfunction via modifying the rhythmic expression of testosterone synthesis related genes, Int. J. Mol. Sci. 19 (2018). https://doi.org/10.3390/ijms19051325.

[23]

L. Gui, S. Chen, H. Wang, et al., Omega-3 PUFAs alleviate high-fat diet-induced circadian intestinal microbes dysbiosis, Mol. Nutr. Food Res. 63 (2019) e1900492. https://doi.org/10.1002/mnfr.201900492.

[24]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method, Methods 25 (2001) 402-408. https://doi.org/10.1006/meth.2001.1262.

[25]

C.C. Lee, Tumor suppression by the mammalian Period genes, Cancer Causes Control 17 (2006) 525-530. https://doi.org/10.1007/s10552-005-9003-8.

[26]

Y.K. Zhang, R.L. Yeager, C.D. Klaassen, Circadian expression profiles of drug-processing genes and transcription factors in mouse liver, Drug Metab. Dispos. 37 (2009) 106-115. https://doi.org/10.1124/dmd.108.024174.

[27]

E.M. Park, L.N. Nguyen, Y.S. Lim, et al., Farnesyl-diphosphate farnesyltransferase 1 regulates hepatitis C virus propagation, FEBS Lett. 588 (2014) 1813-1820. https://doi.org/10.1016/j.febslet.2014.03.043.

[28]

D. Coman, L. Vissers, L.G. Riley, et al., Squalene synthase deficiency: clinical, biochemical, and molecular characterization of a defect in cholesterol biosynthesis, Am. J. Hum. Genet. 103 (2018) 125-130. https://doi.org/10.1016/j.ajhg.2018.05.004.

[29]

S. Tuzmen, G. Hostetter, A. Watanabe, et al., Characterization of farnesyl diphosphate farnesyl transferase 1 (FDFT1) expression in cancer, Per. Med. 16 (2019) 51-65. https://doi.org/10.2217/pme-2016-0058.

[30]

S.N. Wang, K.T. Lee, C.G. Ker, Leptin in hepatocellular carcinoma, World J. Gastroenterol. 16 (2010) 5801-5809. https://doi.org/10.3748/wjg.v16.i46.5801.

[31]

J.P. Silva, D. van Booven, Analysis of diet-induced differential methylation, expression, and interactions of lncRNA and protein-coding genes in mouse liver, Sci Rep. 8 (2018) 11537. https://doi.org/10.1038/s41598-018-29993-4.

[32]

C.G. Wilson, J.L. Tran, D.M. Erion, et al., Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-Fed Mice, Endocrinology 157 (2016) 570-585. https://doi.org/10.1210/en.2015-1866.

[33]

Y.J. Shimada and C.P. Cannon, PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors: past, present, and the future, Eur. Heart J. 36 (2015) 2415-2424. https://doi.org/10.1093/eurheartj/ehv174.

[34]

J.J. Gooley, Circadian regulation of lipid metabolism, Proc. Nutr. Soc. 75 (2016) 440-450. https://doi.org/10.1017/S0029665116000288.

[35]

N. Suzuki-Kemuriyama, T. Matsuzaka, M. Kuba, et al., Different effects of eicosapentaenoic and docosahexaenoic acids on atherogenic high-fat diet-induced non-alcoholic fatty liver disease in mice, PLoS One 11 (2016) e0157580. https://doi.org/10.1371/journal.pone.0157580.

[36]

N.N. Bumpus, E.F. Johnson, 5-Aminoimidazole-4-carboxyamide-ribonucleoside (AICAR)-stimulated hepatic expression of Cyp4a10, Cyp4a14, Cyp4a31, and other peroxisome proliferator-activated receptor alpha-responsive mouse genes is AICAR 5'-monophosphate-dependent and AMP-activated protein kinase-independent, J. Pharmacol. Exp. Ther. 339 (2011) 886-895. https://doi.org/10.1124/jpet.111.184242.

[37]

X. Pan, C.A. Bradfield, M.M. Hussain, Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis, Nat. Commun. 7 (2016) 13011. https://doi.org/10.1038/ncomms13011.

[38]

Y. Adamovich, L. Rousso-Noori, Z. Zwighaft, et al., Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides, Cell Metab. 19 (2014) 319-330. https://doi.org/10.1016/j.cmet.2013.12.016.

[39]

F. Yuan, H. Wang, Y. Tian, et al., Fish oil alleviated high-fat diet-induced non-alcoholic fatty liver disease via regulating hepatic lipids metabolism and metaflammation: a transcriptomic study, Lipids Health Dis. 15 (2016) 20. https://doi.org/10.1186/s12944-016-0190-y.

[40]

A. Kohsaka, A.D. Laposky, K.M. Ramsey, et al., High-fat diet disrupts behavioral and molecular circadian rhythms in mice, Cell Metab. 6 (2007) 414-421. https://doi.org/10.1016/j.cmet.2007.09.006.

[41]

S. Panda, Circadian physiology of metabolism, Science 354 (2016) 1008-1015. https://doi.org/10.1126/science.aah4967.

[42]

N.M. Kettner, C.A. Katchy, L. Fu, Circadian gene variants in cancer, Ann. Med. 46 (2014) 208-220. https://doi.org/10.3109/07853890.2014.914808.

[43]

C. Cadenas, L. van de Sandt, K. Edlund, et al., Loss of circadian clock gene expression is associated with tumor progression in breast cancer, Cell Cycle 13 (2014) 3282-3291. https://doi.org/10.4161/15384101.2014.954454.

[44]

K. Brusselmans, L. Timmermans, T. Van de Sande, et al., Squalene synthase, a determinant of Raft-associated cholesterol and modulator of cancer cell proliferation, J. Biol. Chem. 282 (2007) 18777-18785. https://doi.org/10.1074/jbc.M611763200.

[45]

M.J. Mittenbuhler, H.G. Sprenger, S. Gruber, et al., Hepatic leptin receptor expression can partially compensate for IL-6Ralpha deficiency in DEN-induced hepatocellular carcinoma, Mol. Metab. 17 (2018) 122-133. https://doi.org/10.1016/j.molmet.2018.08.010.

[46]

N.M. Kettner, S.A. Mayo, J. Hua, et al., Circadian dysfunction induces leptin resistance in mice, Cell Metab. 22 (2015) 448-459. https://doi.org/10.1016/j.cmet.2015.06.005.

[47]

T. Kudo, M. Kawashima, T. Tamagawa, et al., Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet, Am. J. Physiol. Endocrinol. Metab. 294 (2008) E120-130. https://doi.org/10.1152/ajpendo.00061.2007.

[48]

D. Ma, T. Liu, L. Chang, et al., The liver clock controls cholesterol homeostasis through trib1 protein-mediated regulation of PCSK9/low density lipoprotein receptor (LDLR) Axis, J. Biol. Chem. 290 (2015) 31003-31012. https://doi.org/10.1074/jbc.M115.685982.

[49]

J.Y. Chiang, Bile acid metabolism and signaling, Compr Physiol. 3 (2013) 1191-1212. https://doi.org/10.1002/cphy.c120023.

Food Science and Human Wellness
Pages 1716-1729
Cite this article:
Bu Y, Chen S, Ruan M, et al. Per1/Per2 double knockout transcriptome analysis reveals circadian regulation of hepatic lipid metabolism. Food Science and Human Wellness, 2023, 12(5): 1716-1729. https://doi.org/10.1016/j.fshw.2023.02.034

578

Views

97

Downloads

5

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 24 July 2021
Revised: 16 August 2021
Accepted: 14 October 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return