AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Polyphenols and pectin enriched golden kiwifruit (Actinidia chinensis) alleviates high fructose-induced glucolipid disorders and hepatic oxidative damage in rats: in association with improvement of fatty acids metabolism

Aamina AlimaTing Lia( )Tanzeela NisarbZeshan AlicDaoyuan RenaYueyue LiuaXingbin Yanga( )
Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore 54000, Pakistan
Department of Life sciences, Barani Institution, Sahiwal 57000, Pakistan

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

This study aimed to investigate the protective effects of fleshes from two Actinidia chinensis (ACF), pericarps from two A. chinensis (ACP), and fleshes with pericarps from two A. chinensis (ACFP) on high fructose (HF)-instigated dyslipidemia, hepatic steatosis, oxidative stress, insulin resistance, and fatty acid metabolism disorders in rats. In general, the above abnormalities were improved after 10 weeks intervention of ACF, ACP, and ACFP. Especially, ACFP considerably ameliorated HF-induced abnormal changes in body weight gain, serum TC, TG, LDL-C and HDL-C levels, as well as serum and hepatic SFAs, MUFAs and PUFAs contents. ACFP also alleviated HF-induced hyperglycemia and hyperinsulinemia, stabilized HF-caused increase in hepatic MDA and serum ALT, AST levels, and restored HF-declined hepatic T-SOD and GSH-Px activities. Besides, histopathology of the liver further endorsed the protective effects of ACFP on hepatocellular injury. Moreover, ACFP increased HF-dropped acetic, propionic and butyric acid levels. Overall, ACFP employs more efficacious protective effects against HF-induced metabolic disorders and liver damage than ACF and ACP. This study delivers a scientific foundation for developing kiwifruit (counting peel)-based dietary supplements for those with glucolipid-metabolic disorders and liver damage.

References

[1]

M. Benado, C. Alcantara, R. Rosa, et al., Effects of various levels of dietary fructose on blood lipids of rats, Nutr. Res. 24 (2004) 565-571. https://doi.org/10.1016/j.nutres.2004.04.002.

[2]

V.T. Samuel, Fructose induced lipogenesis: from sugar to fat to insulin resistance, Trends Endocrinol. Metab. 22(2) (2011) 60-65. https://doi.org/10.1530/JOE-10-0190.

[3]

K.L. Teff, S.S. Elliott, M. Tschop, et al., Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women, J. Clin. Endocrinol. Metab. 89(6) (2004) 2963-2972. https://doi.org/10.1210/jc.2003-031855.

[4]

K.L. Stanhope, J.M. Schwarz, N.L. Keim, et al., Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans, J. Clin. Invest. 119(5) (2009) 1322-1334. https://doi.org/10.1186/1743-7075-9-68

[5]

E. Fabbrini, S. Sullivan, S. Klein, Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications, Hepatology 51(2) (2010) 679-689. https://doi.org/10.1002/hep.23280.

[6]

W.B. Kannel, R.S. Vasan, Triglycerides as vascular risk factors: new epidemiologic insights, Curr. Opin. Cardiol. 24(4) (2009) 345-350. https://doi.org/10.1097/HCO.0b013e32832c1284.

[7]

K.L. Stanhope, A.A. Bremer, V. Medici, et al., Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women, J. Clin. Endocrinol. Metab. 96(10) (2011) E1596-E1605. https://doi.org/10.1097/MOL.0000000000000653.

[8]

W.C. Dornas, W.G. de Lima, R.C. dos Santos, et al., High dietary salt decreases antioxidant defenses in the liver of fructose-fed insulin-resistant rats, J. Nutr. Biochem. 24(12) (2013) 2016-2022. https://doi.org/10.1016/j.jnutbio.2013.06.006.

[9]

C. Messier, K. Whately, J. Liang, et al., The effects of a high-fat, high-fructose, and combination diet on learning, weight, and glucose regulation in C57BL/6 mice, Behav. Brain Res. 178 (2007) 139-145. https://doi.org/10.1016/j.bbr.2006.12.011.

[10]

J.P. Bantle, D.C. Laine, J.W. Thomas, Metabolic effects of dietary fructose and sucrose in types I and II diabetic subjects, JAMA 256(23) (1986) 3241-3246. https://doi.org/10.1001/jama.1986.03380230065027.

[11]

R. Buettner, J. Scholmerich, L.C. Bollheimer, High-fat diets: modeling the metabolic disorders of human obesity in rodents, Obesity 15(4) (2007) 798-808. https://doi.org/10.1038/oby.2007.608.

[12]

M.M. Abdullah, N.N. Riediger, Q. Chen, et al., Effects of long-term consumption of a high-fructose diet on conventional cardiovascular risk factors in sprague-dawley rats, Mol. Cell. Biochem. 327(1-2) (2009) 247-256. https://doi.org/10.1007/s11010-009-0063-z.

[13]

A. Girard, S. Madani, E.S.El Boustani, et al., Changes in lipid metabolism and antioxidant defense status in spontaneously hypertensive rats and wistar rats fed a diet enriched with fructose and saturated fatty acids, Nutrition 21(2) (2005) 240-248. https://doi.org/10.1016/j.nut.2006.05.006.

[14]

M.E. Griffin, M.J. Marcucci, G.W. Cline, et al., Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade, Diabetes 48(6) (1999) 1270-1274. https://doi.org/10.2337/diabetes.48.6.1270.

[15]

L. Hartley, E. Igbinedion, J. Holmes, et al., Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases, Cochrane Database Syst. Rev. 2013(6) (2013) CD009874-CD009874. https://doi.org/10.1080/10408398.2015.1040487.

[16]

J.A. Jung, T.C. Song, D. Han, et al., Cardiovascular protective properties of kiwifruit extracts in vitro, Biol. Pharm. Bull. (9) (2005) 1782-1785. https://doi.org/10.1248/bpb.28.1782.

[17]

S.J. Edmunds, N.C. Roy, D.R. Love, et al., Kiwifruit extracts inhibit cytokine production by lipopolysaccharide-activated macrophages, and intestinal epithelial cells isolated from IL10 gene deficient mice, Cell. Immunol. 1(270) (2011) 70-79. https://doi.org/10.1016/j.cellimm.2011.04.004.

[18]

S. Li, H.Y. Tan, N. Wang, et al., The potential and action mechanism of polyphenols in the treatment of liver diseases, Oxid. Med. Cell. Longev. 2018 (2018) 8394818. https://doi.org/10.1155/2018/8394818.

[19]

S. Khurana, K. Venkataraman, A. Hollingsworth, et al., Polyphenols: benefits to the cardiovascular system in health and in aging, Nutrients 5(10) (2013) 3779-3827. https://doi.org/10.3390/nu5103779.

[20]

T. Jiang, X. Gao, C. Wu, et al., Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity, Nutrients 8(3) (2016) 126. https://doi.org/10.3390/nu8030126.

[21]

H. Kang, J.H. Kwon, D.U. Ahn, et al., Effect of citrus pectin oligosaccharide prepared by irradiation on high cholesterol diet B6.KOR-ApoE mice, Food Sci. Biotechnol. 18(4) (2009) 884-888.

[22]

E. Khasina, E. Kolenchenko, M. Sgrebneva, et al., Antioxidant activities of a low etherified pectin from the seagrass Zostera marina, Russ. J. Mar. Biol. 29 (2003) 259-261. https://doi.org/10.1023/A:1025493128327.

[23]

H. Iwasawa, E. Morita, S. Yui, et al., Anti-oxidant effects of kiwi fruit in vitro and in vivo, Biol. Pharm. Bull. 31(1) (2011) 128-134. https://doi.org/10.1248/bpb.34.128.

[24]

A. Alim, T. Li, T. Nisar, et al., Antioxidant, antimicrobial, and antiproliferative activity-based comparative study of peel and flesh polyphenols from Actinidia chinensis, Food Nutr. Res. 63 (2019). https://doi.org/10.29219/fnr.v63.1577.

[25]

S. Gorinstein, R. Haruenkit, S. Poovarodom, et al., The comparative characteristics of snake and kiwi fruits, Food Chem. Toxicol. 47(8) (2009) 1884-1891. https://doi.org/10.1016/j.fct.2009.04.047.

[26]

P.S. Panchami, S. Gunasekaran, Extraction and characterization of pectin from fruit waste, Int. J. Curr. Microbiol. Appl. Sci. 6(8) (2017) 943-948. https://doi.org/10.20546/ijcmas.2017.608.116.

[27]
World Health Organization, Principles and methods for the risk assessment of chemicals in food. EHC 240. Available at: www.who.int/foodsafety/chem/principles/en/index1.html, (2009).
[28]

Z. Liu, Y. Chen, Q. Qiao, et al., Sesamol supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of nuclear factor kappaB, Mol. Nutr. Food Res. 61(5) (2017). https://doi.org/10.1002/mnfr.201600734.

[29]

J. Chidambaram, A.C. Venkatraman, Cissus quadrangularis stem alleviates insulin resistance, oxidative injury and fatty liver disease in rats fed high fat plus fructose diet, Food Chem. Toxicol. 48(8/9) (2010) 2021-2029. https://doi.org/10.1016/j.fct.2010.04.044.

[30]

W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge, Clin. Chem. 18(6) (1972) 499-502.

[31]

L.D. Han, J.F. Xia, Q.L. Liang, et al., Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography–mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy, Analytica. Chimica. Acta. 689(1) (2011) 85-91. https://doi.org/10.1016/j.aca.2011.01.034.

[32]

X. Zhai, D. Lin, Y. Zhao, et al., Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet, J. Agric.Food Chem. 55(68) (2018) 12706-12718. https://doi.org/10.3390/nu12103197.

[33]

W. Li, K. Zhang, H. Yang, Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: possible role of short-chain fatty acids and gut microbiota regulated by pectin, J. Agric. Food Chem. 66(30) (2018) 8015-8025. https://doi.org/10.1021/acs.jafc.8b02979.

[34]

A. Alim, T. Li, T. Nisar, et al., Consumption of two whole kiwifruit (Actinide chinensis) per day improves lipid homeostasis, fatty acid metabolism and gut microbiota in healthy rats, Int. J. Biol. Macromol. 156 (2020) 186-195. https://doi.org/10.1016/j.ijbiomac.2020.04.028.

[35]

R. Garcia-Villalba, J.A. Gimenez-Bastida, M.T. Garcia-Conesa, et al., Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples, J. Sep. Sci. 35(15) (2012) 1906-1913. https://doi.org/10.1002/jssc.201101121.

[36]

H. Nyblom, E. Björnsson, M. Simren, et al., The AST/ALT ratio as an indicator of cirrhosis in patients with PBC, Liver Int. 26 (2006) 840-845. https://doi.org/10.1111/j.1478-3231.2006.01304.x.

[37]

M. Behrends, G. Martinez-Palli, C.U. Niemann, et al., Acute hyperglycemia worsens hepatic ischemia/reperfusion injury in rats, J. Gastrointest. Surg. 14(3) (2010) 528-535. https://doi.org/10.1007/s11605-009-1112-3.

[38]

A.M. Lottenberg, M.D.S. Afonso, M.S.F. Lavrador, et al., The role of dietary fatty acids in the pathology of metabolic syndrome, J. Nutr. Biochem. 23(9) (2012) 1027-1040. https://doi.org/10.1016/j.jnutbio.2012.03.004.

[39]

M. Putakala, S. Gujjala, S. Nukala, et al., Beneficial effects of Phyllanthus amarus against high fructose diet induced insulin resistance and hepatic oxidative stress in male wistar rats, Appl. Biochem. Biotechnol. 183(3) (2017) 744-764. https://doi.org/10.1007/s12010-017-2461-0.

[40]

C.S. Gammon, R. Kruger, A.M. Minihane, et al., Kiwifruit consumption favourably affects plasma lipids in a randomised controlled trial in hypercholesterolaemic men, Br. J. Nutr. 109(12) (2013) 2208-2218. https://doi.org/10.1017/S0007114512004400.

[41]

W.H. Chang, J.F. Liu, Effects of kiwifruit consumption on serum lipid profiles and antioxidative status in hyperlipidemic subjects, Int. J. Food Sci. Nutr. 19 (2009) 1-8. https://doi.org/10.3109/09637480802063517.

[42]

A.K. Duttaroy, A. Jorgensen, Effects of kiwi fruit consumption on platelet aggregation and plasma lipids in healthy human volunteers, Platelets 15(5) (2004) 287-292. https://doi.org/10.1080/09537100410001710290.

[43]

S.M. Grundy, Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome, Am. J. Cardiol. 81(4a) (1998) 18b-25b. https://doi.org/10.1016/s0002-9149(98)00033-2.

[44]

K. Musunuru, Atherogenic dyslipidemia: cardiovascular risk and dietary intervention, Lipids 45(10) (2010) 907-914. https://doi.org/10.1007/s11745-010-3408-1.

[45]

F. Brouns, E. Theuwissen, A. Adam, et al., Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women, Eur. J. Clin. Nutr. 66 (2011) 591-599. https://doi.org/10.1038/ejcn.2011.208.

[46]

A.R. Rahbar, M.M. Mahmoudabadi, M.S. Islam, Comparative effects of red and white grapes on oxidative markers and lipidemic parameters in adult hypercholesterolemic humans, Food Funct. 6(6) (2015) 1992-1998. https://doi.org/10.1039/c5fo00100e.

[47]

H. Ullah, A. De Filippis, H. Khan, et al., An overview of the health benefits of Prunus species with special reference to metabolic syndrome risk factors, Food Chem. Toxicol. 144 (2020) 111574. https://doi.org/10.1016/j.fct.2020.111574.

[48]

S.B. Budin, H. Ismail, P.L. Chong, Psidium guajava fruit peel extract reduces oxidative stress of pancreas in streptozotocin-induced diabetic rats, Sains Malays. 62(6) (2013) 703-713.

[49]

A. Kamal-Eldina, J. Franka, A. Razdana, et al., Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats, Lipids Health Dis. 35 (2000) 427-435. https://doi.org/10.1007/s11745-000-541-y.

[50]

E.F. Hoek-van den Hil, E.M. van Schothorst, I. van der Stelt, et al., Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice, Genes Nutr. 9(5) (2014) 418. https://doi.org/10.1002/ptr.4687.

[51]

E. Juárez-Hernández, N.C. Chávez-Tapia, M. Uribe, et al., Role of bioactive fatty acids in nonalcoholic fatty liver disease, Nutr. J. 15(1) (2016) 72. https://doi.org/10.1186/s12937-016-0191-8.

[52]

T. Zou, B. Wang, S. Li, et al., Dietary apple polyphenols promote fat browning in high-fat diet-induced obese mice through activation of adenosine monophosphate-activated protein kinase α, J. Sci. Food. Agric. 100(6) (2020) 2389-2398. https://doi.org/10.1002/jsfa.10248.

[53]

M. Suzuki, T. Kajuu, Suppression of hepatic lipogenesis by pectin and galacturonic acid orally-fed at the separate timing from digestion-absorption of nutrients in rat, J. Nutr. Sci. Vitaminol. (Tokyo) 29(5) (1983) 553-562. https://doi.org/10.3177/jnsv.29.553.

[54]

D. Ren, Y. Hu, Y. Luo, et al., Selenium-containing polysaccharide from ziyang green tea ameliorates high-fructose diet induced insulin resistance and hepatic oxidative stress in mice, Food Funct. 6 (2015). https://doi.org/10.1039/C5FO00557D.

[55]

J.H. Kim, J.W. Kim, S.C. Kim, et al., Kiwifruit (Actinidia chinensis) extract annuls chronic insulininduced insulin resistance in l6 skeletal muscle cells, Food Sci. Biotechnol. 22(4) (2013) 1091-1096. https://doi.org/10.1007/s10068-013-0188-4.

[56]

R. Wilson, J. Willis, R.B. Gearry, et al., SunGold kiwifruit supplementation of individuals with prediabetes alters gut microbiota and improves vitamin C status, anthropometric and clinical markers, Nutrients 10(7) (2018). https://doi.org/10.3390/nu10070895.

[57]

R. Zhang, Y. Zhao, Y. Sun, et al., Isolation, characterization, and hepatoprotective effects of the raffinose family oligosaccharides from Rehmannia glutinosa Libosch, J. Sci. Food. Agric. 61(32) (2013) 7786-7793. https://doi.org/10.1021/jf4018492.

[58]

Y. Zhou, M. Zhao, Z. Pu, et al., Relationship between oxidative stress and inflammation in hyperuricemia: Analysis based on asymptomatic young patients with primary hyperuricemia, Medicine 97(49) (2018) e13108. https://doi.org/10.1097/MD.0000000000013108.

[59]

N. Wathoni, C.Y. Shan, W.Y.Shan, et al., Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind, Heliyon 5(8) (2019) e02299. https://doi.org/10.1016/j.heliyon.2019.e02299.

[60]

H. Zhang, R. Tsao, Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects, Curr. Opin. Food Sci. 8 (2016) 33-42. https://doi.org/10.3390/molecules26040985.

[61]

L. Sun, X. Li, G. Li, et al., Actinidia chinensis planch. improves the indices of antioxidant and anti-inflammation status of type 2 diabetes mellitus by activating Keap1 and Nrf2 via the upregulation of MicroRNA-424, Oxid. Med. Cell. Longev. 2017 (2017) 1-14. https://doi.org/10.1155/2017/7038789.

[62]

W. Kang, H. Yang, H.J. Hong, et al., Anti-oxidant activities of kiwi fruit extract on carbon tetrachloride-induced liver injury in mice, Korean J. Vet. Res. 52 (2012) 275-280. https://doi.org/10.14405/kjvr.201252.4.275.

[63]

H.M. Xia, J. Wang, X.J. Xie, et al., Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats, Int. J. Mol. Med. 44(4) (2019) 1523-1530. https://doi.org/10.3892/ijmm.2019.4285.

[64]

A. Kasperowicz, K. Stan-Głasek, B. Kowalik, et al., Effect of dietary fructose polymers or sucrose on microbial fermentation, enzyme activity, ciliate concentration and diversity of bacterial flora in the rumen of rams, Anim. Feed Sci. Technol. 195 (2014) 38-46. https://doi.org/10.1016/J.ANIFEEDSCI.2014.06.014.

[65]

C.A. Montoya, S. Saigeman, S.M. Rutherfurd, et al., The digestion of kiwifruit (Actinidia deliciosa) fibre and the effect of kiwifruit on the digestibility of other dietary nutrients, Food Chem. 197 (2016) 539-545. https://doi.org/10.1016/j.foodchem.2015.10.136.

Food Science and Human Wellness
Pages 1872-1884
Cite this article:
Alim A, Li T, Nisar T, et al. Polyphenols and pectin enriched golden kiwifruit (Actinidia chinensis) alleviates high fructose-induced glucolipid disorders and hepatic oxidative damage in rats: in association with improvement of fatty acids metabolism. Food Science and Human Wellness, 2023, 12(5): 1872-1884. https://doi.org/10.1016/j.fshw.2023.02.039

587

Views

17

Downloads

5

Crossref

3

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 28 March 2022
Revised: 12 May 2022
Accepted: 31 May 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return