AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Biofilm removal mediated by Salmonella phages from chicken-related sources

Zhenzhen NingLingling ZhangLinlin CaiXinglian XuYing ChenHuhu Wang( )
Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Salmonella and their biofilm formation are the primary bacterial causes of foodborne outbreaks and cross-contamination. The objective of the study was to investigate the potential of Salmonella phages as an alternative technology for biofilm removal. In this work, 21 Salmonella phages were isolated from a chicken farm and slaughter plant and the phage (CW1) with the broadest spectrum was characterized. Complete genome sequence analysis revealed that the genomes of phage CW1 is composed of 41763 bp with 58 open reading frames (ORFs) and a holin-endolysin system and it does not encode any virulence or lysogeny. A phage cocktail consisted of CW1 (with the broadest spectrum of 70.49%) and CW11, M4 and M10 (with a high lytic activity of more than 67.11%) was established. Treatment with the cocktail reduced the cells in the developing biofilm and mature biofilm by 0.79 lg(CFU/cm2) and 0.4 lg(CFU/cm2), respectively. More dead cells and scattered extracellular polymeric substances (EPS) were observed by confocal laser scanning microscopy and scanning electron microscopy. Raman analysis found that carbohydrates and proteins were the identification receptors for scattered EPS. This finding suggests that this phage cocktail has potential applications for the sterilization of Salmonella biofilm during meat processing.

References

[1]

M.F. Peruzy, F. Capuano, Y.T.R. Proroga, et al., Antimicrobial Susceptibility testing for Salmonella serovars isolated from food samples: five-year monitoring (2015-2019), Antibiotics-Basel 9(7) (2020) 365. https://doi.org/10.3390/antibiotics9070365.

[2]
W.H. Organization, WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015, World Health Organization (2015) 72.
[3]

B. Yin, L. Zhu, Y. Zhang, et al., The characterization of biofilm formation and detection of biofilm-related genes in Salmonella isolated from beef processing plants, Foodborne Pathog. Dis. 15(10) (2018) 660-667. https://doi.org/10.1089/fpd.2018.2466.

[4]

A. Paz-Mendez, A. Lamas, B. Vazquez, et al., Effect of food residues in biofilm formation on stainless steel and polystyrene surfaces by Salmonella enterica strains isolated from poultry houses, Foods 6(12) (2017). https://doi.org/10.3390/foods6120106.

[5]

R. Maruzani, G. Sutton, P. Nocerino, et al., Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces, J. Microbiol. 57(1) (2019) 1-8. https://doi.org/10.1007/s12275-019-8353-y.

[6]

S. Srey, I.K. Jahid, S.D. Ha, Biofilm formation in food industries: a food safety concern, Food Control 31(2) (2013) 572-585. https://doi.org/10.1016/j.foodcont.2012.12.001.

[7]

X. Shi, X. Zhu, Biofilm formation and food safety in food industries, Trends Food Sci. Technol. 20(9) (2009) 407-413. https://doi.org/10.1016/j.tifs.2009.01.054.

[8]

K. Cwiek, G. Bugla-Ploskonska, A. Wieliczko, Salmonella biofilm development: structure and significance, Postepy Higieny I Medycyny Doswiadczalnej 73 (2019) 937-943. https://doi.org/10.5604/01.3001.0013.7866.

[9]

E.N. Gkana, A.I. Doulgeraki, N.G. Chorianopoulos, et al., Antiadhesion and anti-biofilm potential of organosilane nanoparticles against foodborne pathogens, Front. Microbiol. 8 (2017). https://doi.org/10.3389/fmicb.2017.01295.

[10]

J.B. Aswathanarayan, R.R. Vittal, Inhibition of biofilm formation and quorum sensing mediated phenotypes by berberine in Pseudomonas aeruginosa and Salmonella typhimurium, Rsc. Adv. 8(63) (2018) 36133-36141. https://doi.org/10.1039/c8ra06413j.

[11]

L. Shao, Y. Dong, X. Chen, et al., Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. using combined ultrasound and disinfectants, Ultrason. Sonochem. 69 (2020). https://doi.org/10.1016/j.ultsonch.2020. 105269.

[12]

S.I. Khan, G. Blumrosen, D. Vecchio, et al., Eradication of multidrugresistant pseudomonas biofilm with pulsed electric fields, Biotechnol. Bioengin. 113(3) (2016) 643-650. https://doi.org/10.1002/bit.25818.

[13]

A.D. Verderosa, M. Totsika, K.E. Fairfull-Smith, Bacterial biofilm eradication agents: a current review, Front. Chem. 7 (2019). https://doi.org/10.3389/fchem.2019.00824.

[14]

S. Sillankorva, J. Azeredo, Bacteriophage attack as an anti-biofilm strategy, in: G. Donelli (Ed.) Microbial biofilms: methods and protocols, 2014, pp. 277-285. https://doi.org/10.1007/978-1-4939-0467-9_20.

[15]

Z.D. Moye, J. Woolston, A. Sulakvelidze, Bacteriophage applications for food production and processing, Viruses-Basel 10(4) (2018). https://doi.org/10.3390/v10040205.

[16]

M. Lusiak-Szelachowska, B. Weber-Dabrowska, A. Gorski, Bacteriophages and lysins in biofilm control, Virol. Sin. 35(2) (2020) 125-133. https://doi.org/10.1007/s12250-019-00192-3.

[17]

M. Merabishvili, J.P. Pirnay, D. de Vos, Guidelines to compose an ideal bacteriophage cocktail, Methods Mol. Biol. (Clifton, N.J.) 1693 (2018) 99-110. https://doi.org/10.1007/978-1-4939-7395-8_9.

[18]

A. Switt, R.H. Orsi, H.C. den Bakker, et al., Genomic characterization provides new insight into Salmonella phage diversity, BMC Genomics. 14 (2013). https://doi.org/10.1186/1471-2164-14-481.

[19]

J.R. Saunders, H. Allison, C.E. James, et al., Phage-mediated transfer of virulence genes, J. Chem. Technol. Biotechnol. 76 (2001) 662-666. https://doi.org/10.1002/jctb.437.

[20]

C. Milho, M.D. Silva, L. Melo, et al., Control of Salmonella enteritidis on food contact surfaces with bacteriophage PVP-SE2, Biofouling 34(7) (2018) 753-768. https://doi.org/10.1080/08927014.2018.1501475.

[21]

C. Ferriol-Gonzalez, P. Domingo-Calap, Phages for biofilm removal, Antibiotics-Basel 9(5) (2020). https://doi.org/10.3390/antibiotics9050268.

[22]

F. Tang, P. Zhang, Q. Zhang, et al., Isolation and characterization of a broadspectrum phage of multiple drug resistant Salmonella and its therapeutic utility in mice, Microb. Pathog. 126 (2019) 193-198. https://doi.org/10.1016/j.micpath.2018.10.042.

[23]

G. Carey-Smith, C. Billington, A. Cornelius, et al., Isolation and characterization of bacteriophages infecting Salmonella spp., FEMS Microbiol. Lett. 258(2) (2006) 182-186. https://doi.org/10.1111/j.1574-6968.2006.00217.x.

[24]

J. Kwon, S.G. Kim, H.J. Kim, et al., Isolation and characterization of Salmonella jumbo-phage pSal-SNUABM-04, Viruses-Basel 13(1) (2021). https://doi.org/10.3390/v13010027.

[25]

K. Fong, B. LaBossiere, A. Switt, et al., Characterization of four novel bacteriophages isolated from british columbia for control of non-typhoidal Salmonella in vitro and on sprouting alfalfa seeds, Front. Microb. 8 (2017). https://doi.org/10.3389/fmicb.2017.02193.

[26]

S. Ahiwale, A.V. Bankar, S.N. Tagunde, et al., Isolation and characterization of a rare waterborne lytic phage of Salmonella enterica serovar Paratyphi B, Canadian J. Microb. 59(5) (2013) 318-323. https://doi.org/10.1139/cjm-2012-0589.

[27]

H. Kang, J. Kim, T. Jung, et al., A new biocontrol agent for Salmonella enterica serovars Enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study, Appl. Environm. Microb. 79(6) (2013) 1956-1968. https://doi.org/10.1128/aem.02793-12.

[28]

M. Kuźmińska-Bajor, P. Śliwka, M. Ugorski, et al., Genomic and functional characterization of five novel Salmonella-targeting bacteriophages, Virol. J. 18 (2021) 1-14. https://doi.org/10.1186/s12985-021-01655-4.

[29]

P. Mutusamy, S. Jaya Jothi, S.Y. Lee, et al., Complete genome sequence of Salmonella enterica bacteriophage PRF-SP1, Microbiol. Resour. Announc. 10 (2021) e965-21. https://doi.org/10.1128/MRA.00965-21.

[30]

H. Wang, J. Qi, Y. Dong, et al., Characterization of attachment and biofilm formation by meat-borne Enterobacteriaceae strains associated with spoilage, LWT-Food Sci. Technol. 86 (2017) 399-407. https://doi.org/10.1016/j.lwt.2017.08.025.

[31]

K. Jia, G. Wang, L. Liang, et al., Preliminary transcriptome analysis of mature biofilm and planktonic cells of Salmonella enteritidis exposure to acid stress, Front. Microb. 8 (2017). https://doi.org/10.3389/fmicb.2017.01861.

[32]

H. Wang, N. Wu, Y. Jiang, et al., Response of long-term acid stress to biofilm formation of meat-related Salmonella enteritidis, Food Control 69 (2016) 214-220. https://doi.org/10.1016/j.foodcont.2016.04.055.

[33]

H. Wang, X. Zhang, Y. Dong, et al., Insights into the transcriptome profile of mature biofilm of Salmonella typhimurium on stainless steels surface, Food Res. Int. 77 (2015) 378-384. https://doi.org/10.1016/j.foodres.2015.08.034.

[34]

H. Wang, S. Ding, G. Wang, et al., In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach, Intern. J. Food Microb. 167 (2013) 293-302. https://doi.org/10.1016/j.ijfoodmicro.2013.10.005.

[35]

S. Wongsuntornpoj, A. Switt, P. Bergholz, et al., Salmonella phages isolated from dairy farms in Thailand show wider host range than a comparable set of phages isolated from US dairy farms, Vet. Microbiol. 172 (2014) 345-352. https://doi.org/10.1016/j.vetmic.2014.05.023.

[36]

M. Islam, Y. Zhou, L. Liang, et al., Application of a phage cocktail for control of Salmonella in foods and reducing biofilms, Viruses-Basel 11(9) (2019). https://doi.org/10.3390/v11090841.

[37]

W. Rivera-Perez, E. Barquero-Calvo, R. Zamora-Sanabria, Salmonella contamination risk points in broiler carcasses during slaughter line processing, J. Food Protect. 77 (2014) 2031-2034. https://doi.org/10.4315/0362-028x.Jfp-14-052.

[38]

D. Turner, M. Hezwani, S. Nelson, et al., Characterization of the Salmonella bacteriophage vB_SenS-Ent1, J. Gen. Virol. 93 (2012) 2046-2056. https://doi.org/10.1099/vir.0.043331-0.

[39]

V. Ricci, L.J.V. Piddock, Exploiting the role of TolC in pathogenicity: identification of a bacteriophage for eradication of Salmonella serovars from poultry, Appl. Environm. Microbiol. 76(5) (2010) 1704-1706. https://doi.org/10.1128/aem.02681-09.

[40]

J. Landstroem, E.L. Nordmark, R. Eklund, et al., Interaction of a Salmonella enteritidis O-antigen octasaccharide with the phage P22 tailspike protein by NMR spectroscopy and docking studies, Glycoconj. J. 25(2) (2008) 137-143. https://doi.org/10.1007/s10719-007-9065-9.

[41]

Y. Gao, X. Feng, M. Xian, et al., Inducible cell lysis systems in microbial production of bio-based chemicals, Appl. Microbiol. Biotechnol. 97(16) (2013) 7121-7129. https://doi.org/10.1007/s00253-013-5100-x.

[42]

M.J. Catalao, F. Gil, J. Moniz-Pereira, et al., Diversity in bacterial lysis systems: bacteriophages show the way, FEMS Microbiol. Rev. 37(4) (2013) 554-571. https://doi.org/10.1111/1574-6976.12006.

[43]

D. Pires, S. Sillankorva, A. Faustino, et al., Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms, Res. Microb. 162 (2011) 798-806. https://doi.org/10.1016/j.resmic.2011.06.010.

[44]

P. Knezevic, O. Petrovic, A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm, J. Microbiol. Methods 74(2/3) (2008) 114-118. https://doi.org/10.1016/j.mimet.2008.03.005.

[45]

M. Wagner, N.P. Ivleva, C. Haisch, et al., Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS - Matrix, Water Res. 43 (2009) 63-76. https://doi.org/10.1016/j.watres.2008.10.034.

[46]

Y.P. Chen, P. Zhang, J.S. Guo, et al., Functional groups characteristics of EPS in biofilm growing on different carriers, Chemosphere 92(6) (2013) 633-638. https://doi.org/10.1016/j.chemosphere.2013.01.059.

[47]

K. Hrubanova, V. Krzyzanek, J. Nebesarova, et al., Monitoring candida parapsilosis and Staphylococcus epidermidis biofilms by a combination of scanning electron microscopy and raman spectroscopy, Sensors 18(12) (2018). https://doi.org/10.3390/s18124089.

Food Science and Human Wellness
Pages 1799-1808
Cite this article:
Ning Z, Zhang L, Cai L, et al. Biofilm removal mediated by Salmonella phages from chicken-related sources. Food Science and Human Wellness, 2023, 12(5): 1799-1808. https://doi.org/10.1016/j.fshw.2023.02.044

548

Views

55

Downloads

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 15 December 2021
Revised: 30 January 2021
Accepted: 03 February 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return