AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Flammulina velutipes polysaccharide-iron(Ⅲ) complex used to treat iron deficiency anemia after being absorbed via GLUT2 and SGLT1 transporters

Chenying Shia,1Chen Chenga,1Xiaotong LinaYanfang QianaYufeng Dub( )Guitang Chena( )
Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal, Medicine Processing, China Pharmaceutical University, Nanjing 211198, China
College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China

1 These authors contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Iron deficiency anemia (IDA) is a common nutritional problem, but traditional iron supplements cause many adverse reactions. Thus, the development of a novel iron supplement might be significant for the treatment of IDA. This study aimed to study the transport mechanism of Flammulina velutipes polysaccharide-iron complex (FVP1-Fe(Ⅲ)) in Caco-2 cells and the therapeutic effect on IDA rats, as well as the influence on gut microbiota in vivo. These results showed that in vitro, the uptake of FVP1-Fe(Ⅲ) was mediated by sodium-dependent glucose transporter-1 (SGLT1) and facilitated glucose transporter-2 (GLUT2) and GLUT2 played a dominant function. The multidrug resistance-associated protein-2 (MRP-2) was involved in the efflux of FVP1-Fe(Ⅲ) across the Caco-2 cells. In vivo, FVP1-Fe(Ⅲ) had a better restorative effect on blood parameters and iron status indicators in rats with IDA as compared with FeSO4 and exerted this effect by downregulating the expression of hepcidin. FVP1-Fe(Ⅲ) could also regulate gut microbiota dysbiosis in iron deficiency rats by returning the relative abundance of gut microbiota to the normal level. Besides, as a dietary factor, vitamin C (vit C) could enhance the therapeutic effect of FVP1-Fe(Ⅲ). These present findings showed that FVP1-Fe(Ⅲ) could be exploited as a novel iron supplement to treat IDA.

References

[1]

M.F. de Escalada Pla, S.K. Flores, C.E. Genevois, Innovative strategies and nutritional perspectives for fortifying pumpkin tissue and other vegetable matrices with iron, Food Sci. Hum. Well. 9(2) (2020) 103-111. https://doi.org/10.1016/j.fshw.2020.02.005.

[2]

G. Barragán-Ibañez, A. Santoyo-Sánchez, C.O. Ramos-Peñafiel, Iron deficiency anaemia, Rev. Med. Hosp. Gen. (Mexico City) 79(2) (2016) 88-97. https://doi.org/10.1016/j.hgmx.2015.06.008.

[3]

B. Elstrott, L. Khan, S. Olson, et al., The role of iron repletion in adult iron deficiency anemia and other diseases, Eur. J. Haematol. 104(3) (2020) 153-161. https://doi.org/10.1111/ejh.13345.

[4]

A. Lopez, P. Cacoub, I.C. Macdougall, et al., Iron deficiency anaemia, Lancet 387(10021) (2016) 907-916. https://doi.org/10.1016/S0140-6736(15)60865-0.

[5]

E.A. Jankowska, S. von Haehling, S.D. Anker, et al., Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives, Eur. Heart J. 34(11) (2013) 816-829. https://doi.org/10.1093/eurheartj/ehs224.

[6]

J.F. Cui, Y.P. Li, P. Yu, et al., A novel low molecular weight Enteromorpha polysaccharide-iron (Ⅲ) complex and its effect on rats with iron deficiency anemia (IDA), Int. J. Biol. Macromol. 108 (2018) 412-418. https://doi.org/10.1016/j.ijbiomac.2017.12.033.

[7]

Z. Tolkien, L. Stecher, A.P. Mander, et al., Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis, PLoS One 10(2) (2015) e0117383. https://doi.org/10.1371/journal.pone.0117383.

[8]

X. Gao, H. Qu, Z.L. Gao, et al., Protective effects of Ulva pertusa polysaccharide and polysaccharide-iron (Ⅲ) complex on cyclophosphamide induced immunosuppression in mice, Int. J. Biol. Macromol. 133 (2019) 911-919. https://doi.org/10.1016/j.ijbiomac.2019.04.101.

[9]

H. He, H. Teng, Q. Huang, et al., Beneficial effects of AOS-iron supplementation on intestinal structure and microbiota in IDA rats, Food Sci. Hum. Well. 10(1) (2021) 23-31. https://doi.org/10.1016/j.fshw.2020.05.009.

[10]

W.H. Gao, Y.P. Huang, R.X. He, et al., Synthesis and characterization of a new soluble soybean polysaccharide-iron(Ⅲ) complex using ion exchange column, Int. J. Biol. Macromol. 108 (2018) 1242-1247. https://doi.org/10.1016/j.ijbiomac.2017.11.038.

[11]

T. Liu, T.T. Liu, H.C. Liu, et al., Preparation and characterization of a novel polysaccharide-iron(Ⅲ) complex in Auricularia auricula potentially used as an iron supplement, BioMed Res. Int. 2019 (2019) 6416941. https://doi.org/10.1155/2019/6416941.

[12]

Y.S. Jing, R.J. Zhang, L.F. Wu, et al., Structural characteristics and antioxidant activity of polysaccharide-iron complex from Glehniae radix, International Journal of Food Properties. 23(1) (2020) 894-907. https://doi.org/10.1080/10942912.2020.1770787.

[13]

Y. Zhang, F.Y. Ma, J.H. Zhu, et al., Characterization of a novel polysaccharide-iron(Ⅲ) complex and its anti-anemia and nonspecific immune regulating activities, Mini-Rev. Med. Chem. 17(17) (2017) 1677-1683. https://doi.org/10.2174/1389557517666170424130327.

[14]

T.T. Zhang, J.F. Ye, C.H. Xue, et al., Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes, Carbohydr. Polym. 197 (2018) 147-156. https://doi.org/10.1016/j.carbpol.2018.05.069.

[15]

Z.H. Liang, K.W. Zheng, Q.C. Zhao, et al., Structural identification and coagulation effect of Flammulina velutipes polysaccharides, Appl. Sci. 11(4) (2021) 1736. https://doi.org/10.3390/app11041736.

[16]

Z. Ma, C. Zhang, X. Gao, et al., Enzymatic and acidic degradation effect on intracellular polysaccharide of Flammulina velutipes SF-08, Int. J. Biol. Macromol. 73 (2015) 236-244. https://doi.org/10.1016/j.ijbiomac.2014.11.028.

[17]

Y.R. Dong, S.J. Cheng, G.H. Qi, et al., Antimicrobial and antioxidant activities of Flammulina velutipes polysacchrides and polysacchride-iron(Ⅲ) complex, Carbohydr. Polym. 165 (2017) 470. https://doi.org/10.1016/j.carbpol.2016.12.069.

[18]

C. Cheng, D.C. Huang, L.Y. Zhao, et al., Preparation and in vitro absorption studies of a novel polysaccharide-iron (Ⅲ) complex from Flammulina velutipes, Int. J. Biol. Macromol. 132 (2019) 801-810. https://doi.org/10.1016/j.ijbiomac.2019.04.015.

[19]

A. Dostal, C. Lacroix, L. Bircher, et al., Iron modulates butyrate production by a child gut microbiota in vitro, mBio 6(6) (2015) e01453-15. https://doi.org/10.1128/mBio.01453-15.

[20]

C. Virili, P. Fallahi, A. Antonelli, et al., Gut microbiota and Hashimoto's thyroiditis, Rev. Endocr. Metab. Disord. 19 (2018) 293-300. https://doi.org/10.1007/s11154-018-9467-y.

[21]

K.N. Raymond, E.A. Dertz, S.S. Kim, Enterobactin: an archetype for microbial iron transport, Proc. Natl. Acad. Sci. U.S.A. 100(7) (2003) 3584-3588. https://doi.org/10.1073/pnas.0630018100.

[22]

E.A.B. Pajarillo, E. Lee, D.K. Kang, Trace metals and animal health: interplay of the gut microbiota with iron, manganese, zinc, and copper, Anim. Nutr. 7(3) (2021) 750-761. https://doi.org/10.1016/j.aninu.2021.03.005.

[23]

A. Bhattacherjee, Y. Hrynets, M. Betti, Transport of the glucosamine-derived browning product fructosazine (polyhydroxyalkylpyrazine) across the human intestinal Caco-2 cell monolayer: role of the hexose transporters, J. Agric. Food Chem. 65(23) (2017) 4642-4650. https://doi.org/10.1021/acs.jafc.7b01611.

[24]

S.V. Moradi, P. Varamini, I. Toth, The transport and efflux of glycosylated luteinising hormone-releasing hormone analogues in Caco-2 cell model: contributions of glucose transporters and efflux systems, J. Pharm. Sci. 103(10) (2014) 3217-3224. https://doi.org/10.1002/jps.24120.

[25]

Z.C. Wang, H.R. Zhang, Y.B. Shen, et al., Characterization of a novel polysaccharide from Ganoderma lucidum and its absorption mechanism in Caco-2 cells and mice model, Int. J. Biol. Macromol. 118(Part A) (2018) 320-326. https://doi.org/10.1016/j.ijbiomac.2018.06.078.

[26]

Y.P. Li, X.P. Wang, Y.C. Jiang, et al., Structure characterization of low molecular weight sulfate Ulva polysaccharide and the effect of its derivative on iron deficiency anemia, Int. J. Biol. Macromol. 126 (2019) 747-754. https://doi.org/10.1016/j.ijbiomac.2018.12.214.

[27]

M.B. Reddy, S.M. Armah, Impact of iron-enriched Aspergillus oryzae on iron bioavailability, safety, and gut microbiota in rats, J. Agric. Food Chem. 66(24) (2018) 6213-6218. https://doi.org/10.1021/acs.jafc.8b01758.

[28]

A. Dostal, C. Chassard, F.M. Hilty, et al., Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats, J. Nutr. 142(2) (2012) 271-277. https://doi.org/10.3945/jn.111.148643.

[29]

M. Yang, Z.L. Zhang, Y. He, et al., Study on the structure characterization and moisturizing effect of Tremella polysaccharide fermented from GCMCC5.39, Food Sci. Hum. Well. 10(4) (2021) 471-479. https://doi.org/10.1016/j.fshw.2021.04.009.

[30]

N.K. Karamanos, A. Hjerpe, T. Tsegenidis, et al., Determination of iduronic acid and glucuronic acid in glycosaminoglycans after stoichiometric reduction and depolymerization using high-performance liquid chromatography and ultraviolet detection, Anal. Biochem. 172(2) (1988) 410-419. https://doi.org/10.1016/0003-2697(88)90463-0.

[31]

J.N. Wu, X.T. Chen, K. Qiao, et al., Purification, structural elucidation, and in vitro antitumor effects of novel polysaccharides from Bangia fuscopurpurea, Food Sci. Hum. Well. 10(1) (2021) 63-71. https://doi.org/10.1016/j.fshw.2020.05.003.

[32]

Q.X. Fu, H.Z. Wang, M.X. Xia, et al., The effect of phytic acid on tight junctions in the human intestinal Caco-2 cell line and its mechanism, Eur. J. Pharm. Sci. 80 (2015) 1-8. https://doi.org/10.1016/j.ejps.2015.09.009.

[33]

F. Li, Y.L. Wei, J. Zhao, et al., Transport mechanism and subcellular localization of a polysaccharide from Cucurbia moschata across Caco-2 cells model, Int. J. Biol. Macromol. 182 (2021) 1003-1014. https://doi.org/10.1016/j.ijbiomac.2021.04.107.

[34]

S.H. Hansen, A. Olsson, J.E. Casanova, Wortmannin, an inhibitor of phosphoinositide 3-kinase, inhibits transcytosis in polarized epithelial cells, J. Biol. Chem. 270(47) (1995) 28425-28432. https://doi.org/10.1074/jbc.270.47.28425.

[35]

C.L. Wells, E.M.A. van de Westerlo, R.P. Jechorek, et al., Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria, Infect. Immun. 66(6) (1998) 2410-2419. https://doi.org/10.1128/IAI.66.6.2410-2419.1998.

[36]

M. Raja, R.K.H. Kinne, Identification of phlorizin binding domains in sodium-glucose cotransporter family: SGLT1 as a unique model system, Biochimie 115 (2015) 187-193. https://doi.org/10.1016/j.biochi.2015.06.003.

[37]

J.S. Scow, C.W. Iqbal, T.W. Jones, et al., Absence of evidence of translocation of GLUT2 to the apical membrane of enterocytes in everted intestinal sleeves, J. Surg. Res. 167(1) (2011) 56-61. https://doi.org/10.1016/j.jss.2010.04.026.

[38]

J.C. Wang, B.C. Goh, W.L. Lu, et al., In vitro cytotoxicity of stealth liposomes co-encapsulating doxorubicin and verapamil on doxorubicin-resistant tumor cells, Biol. Pharm. Bull. 28(5) (2005) 822-828. https://doi.org/10.1248/bpb.28.822.

[39]

S. Agarwal, D. Pal, A.K. Mitra, Both P-gp and MRP2 mediate transport of Lopinavir, a protease inhibitor, Int. J. Pharm. 339(1/2) (2007) 139-147. https://doi.org/10.1016/j.ijpharm.2007.02.036.

[40]

Y.F. Gong, Y.X. Ma, P.C.K. Cheung, et al., Structural characteristics and anti-inflammatory activity of UV/H2O2-treated algal sulfated polysaccharide from Gracilaria lemaneiformis, Food Chem. Toxicol. 152 (2021) 112157. https://doi.org/10.1016/j.fct.2021.112157.

[41]

K.P. Wang, Z.X. Chen, Y. Zhang, et al., Molecular weight and proposed structure of the Angelica sinensis polysaccharide-iron complex, Chin. J. Chem. 26(6) (2008) 1068-1074. https://doi.org/10.1002/cjoc.200890189.

[42]

F.F. Li, P.C. Du, W.Y. Yang, et al., Polysaccharide from the seeds of Plantago asiatica L. alleviates nonylphenol induced intestinal barrier injury by regulating tight junctions in human Caco-2 cell line, Int. J. Biol. Macromol. 164 (2020) 2134-2140. https://doi.org/10.1016/j.ijbiomac.2020.07.259.

[43]

X. Jin, S. Asghar, X.T. Zhu, et al., In vitro and in vivo evaluation of 10-hydroxycamptothecin-loaded poly (n-butyl cyanoacrylate) nanoparticles prepared by miniemulsion polymerization, Colloids Surf. B 162(1-4) (2018) 25-34. https://doi.org/10.1016/j.colsurfb.2017.11.029.

[44]

E. Duizer, A.J. Gilde, C.H.M. Versantvoort, et al., Effects of cadmium chloride on the paracellular barrier function of intestinal epithelial cell lines, Toxicol. Appl. Pharmacol. 155(2) (1999) 117-126. https://doi.org/10.1006/taap.1998.8589.

[45]

X.N. Yu, L.J. Chen, H.X. Ding, et al., Iron transport from ferrous bisglycinate and ferrous sulfate in DMT1-knockout human intestinal Caco-2 cells, Nutrients 11(3) (2019) 485. https://doi.org/10.3390/nu11030485.

[46]

C.C. Lu, K.J. Fu, K.N. Cao, et al., Permeability and transport mechanism of trihexyphenidyl hydrochloride in Caco-2 cell monolayer model with a validated UPLC-MS/MS method, J. Pharm. Biomed. Anal. 178 (2020) 112924. https://doi.org/10.1016/j.jpba.2019.112924.

[47]

L. Turco, T. Catone, F. Caloni, et al., Caco-2/TC7 cell line characterization for intestinal absorption: how reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human? Toxicol. in vitro 25(1) (2011) 13-20. https://doi.org/10.1016/j.tiv.2010.08.009.

[48]

Q.F. Xiang, W.J. Zhang, Q. Li, et al., Investigation of the uptake and transport of polysaccharide from Se-enriched Grifola frondosa in Caco-2 cells model, Int. J. Biol. Macromol. 158 (2020) 1330-1341. https://doi.org/10.1016/j.ijbiomac.2020.04.160.

[49]

S.S. Chun, D.A. Vattem, Y.T. Lin, et al., Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori, Process Biochem. 40(2) (2005) 809-816. https://doi.org/10.1016/j.procbio.2004.02.018.

[50]

G.N. Tocchetti, A. Arias, M.R. Arana, et al., Acute regulation of multidrug resistance-associated protein 2 localization and activity by cAMP and estradiol-17β-d-glucuronide in rat intestine and Caco-2 cells, Arch. Toxicol. 92(2) (2018) 777-788. https://doi.org/10.1007/s00204-017-2092-9.

[51]

H. Jin, Y.N. Zhu, C.Y. Wang, et al., Molecular pharmacokinetic mechanism of the drug-drug interaction between genistein and repaglinide mediated by P-gp, Biomed. Pharmacother. 125 (2020) 110032. https://doi.org/10.1016/j.biopha.2020.110032.

[52]

G. Jedlitschky, U. Hoffmann, H.K. Kroemer, Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition, Expert Opin. Drug Metab. Toxicol. 2(3) (2006) 351-366. https://doi.org/10.1517/17425255.2.3.351.

[53]

N. Smirnoff, Ascorbic acid metabolism and functions: a comparison of plants and mammals, Free Radical Biol. Med. 122 (2018) 116-129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033.

[54]

N. Abbaspour, R. Hurrell, R. Kelishadi, Review on iron and its importance for human health, J. Res. Med. Sci. 19(2) (2014) 164-174.

[55]

S. Salovaara, A.S. Sandberg, T. Andlid, Organic acids influence iron uptake in the human epithelial cell line Caco-2, J. Agric. Food Chem. 50(21) (2002) 6233-6238. https://doi.org/10.1021/jf0203040.

[56]

M.R. Huo, Y. Fu, Y.H. Liu, et al., N-mercapto acetyl-N′-octyl-O, N″-glycol chitosan as an efficiency oral delivery system of paclitaxel, Carbohydr. Polym. 181 (2018) 477-488. https://doi.org/10.1016/j.carbpol.2017.10.066.

[57]

H. He, Q. Huang, C.C. Liu, et al., Effectiveness of AOS–iron on iron deficiency anemia in rats, RSC Adv. 9(9) (2019) 5053-5063. https://doi.org/10.1039/C8RA08451C.

[58]

H. He, Y. Qiao, Z.Y. Zhang, et al., Dual action of vitamin C in iron supplement therapeutics for iron deficiency anemia: prevention of liver damage induced by iron overload, Food Funct. 9(10) (2018) 5390-5401. https://doi.org/10.1039/C7FO02057K.

[59]

Y. Chen, J. Wan, H.D. Xia, et al., Total iron binding capacity (TIBC) is a potential biomarker of left ventricular remodelling for patients with iron deficiency anaemia, BMC Cardiovasc. Disord. 20(1) (2020) 4. https://doi.org/10.1186/s12872-019-01320-3.

[60]

O. Mohammed, N. Dyab, E. Kheadr, et al., Effectiveness of inulin-type on the iron bioavailability in anemic female rats fed bio-yogurt, RSC Adv. 11(4) (2021) 1928-1938. https://doi.org/10.1039/D0RA08873K.

[61]

M.A. Snms, P.R. Dallman, Iron deficiency: impaired liver growth and DNA synthesis in the rat, Br. J. Haematol. 28(4) (1974) 453-462. https://doi.org/10.1111/j.1365-2141.1974.tb06664.x.

[62]

R. Linberg, C.D. Conover, K.L. Shum, Hemoglobin based oxygen carriers: how much methemoglobin is too much? Artif. Cells Blood Substitutes Biotechnol. 26(2) (1998) 133-148. https://doi.org/10.3109/10731199809119772.

[63]

C. Xiao, X.G. Lei, Q.Y. Wang, et al., Effects of a tripeptide iron on iron-deficiency anemia in rats, Biol. Trace Elem. Res. 169(2) (2016) 211-217. https://doi.org/10.1007/s12011-015-0412-6.

[64]

S.N. Acker, B. Petrun, D.A. Partrick, et al., Lack of utility of repeat monitoring of hemoglobin and hematocrit following blunt solid organ injury in children, J. Trauma Acute Care Surg. 79(6) (2015) 991-994. https://doi.org/10.1097/TA.0000000000000791.

[65]

F.M. El-Gendy, M.A. El-Hawy, M.S. Rizk, et al., Value of soluble transferrin receptors and sTfR/log ferritin in the diagnosis of iron deficiency accompanied by acute infection, Indian J. Hematol. Blo. 34(1) (2018) 104-109. https://doi.org/10.1007/s12288-017-0836-6.

[66]

J.O. Cullis, E.J. Fitzsimons, W.J. Griffiths, et al., Investigation and management of a raised serum ferritin, Br. J. Haematol. 181(3) (2018) 331-340. https://doi.org/10.1111/bjh.15166.

[67]

H. Kawabata, Transferrin and transferrin receptors update, Free Radical Biol. Med. 133 (2019) 46-54. https://doi.org/10.1016/j.freeradbiomed.2018.06.037.

[68]

R.A. Feelders, G. Vreugdenhil, A.M. Eggermont, et al., Regulation of iron metabolism in the acute-phase response: interferon γ and tumour necrosis factor α induce hypoferraemia, ferritin production and a decrease in circulating transferrin receptors in cancer patients, Eur. J. Clin. Invest. 28(7) (1998) 520-527. https://doi.org/10.1046/j.1365-2362.1998.00323.x.

[69]

C. Martín-González, R. Pelazas-González, C. Fernández-Rodríguez, et al., Ferritin and liver fibrosis among patients with chronic hepatitis C virus infection, J. Trace Elem. Med. Biol. 61 (2020) 126542. https://doi.org/10.1016/j.jtemb.2020.126542.

[70]

H. Khumalo, Z.A.R. Gomo, V.M. Moyo, et al., Serum transferrin receptors are decreased in the presence of iron overload, Clin. Chem. 44(1) (1998) 40-44. https://doi.org/10.1093/clinchem/44.1.40.

[71]

Y. Zhang, Y. Cheng, N. Wang, et al., The action of JAK, SMAD and ERK signal pathways on hepcidin suppression by polysaccharides from Angelica sinensis in rats with iron deficiency anemia, Food Funct. 5(7) (2014) 1381. https://doi.org/10.1039/c4fo00006d.

[72]

S. Angmo, N. Tripathi, S. Abbat, et al., Identification of guanosine 5′-diphosphate as potential iron mobilizer: preventing the hepcidin-ferroportin interaction and modulating the interleukin-6/STAT-3 pathway, Sci. Rep. 7(1) (2017) 40097. https://doi.org/10.1038/srep40097.

[73]

J.Y. Liu, Y. Zhang, R.X. You, et al., Polysaccharide isolated from Angelica sinensis inhibits hepcidin expression in rats with iron deficiency anemia, J. Med. Food 15(10) (2012) 923-929. https://doi.org/10.1089/jmf.2012.2231.

[74]

X.Q. Guo, W.J. Li, Q.L. Xin, et al., Vitamin C protective role for alcoholic liver disease in mice through regulating iron metabolism, Toxicol. Ind. Health 27(4) (2011) 341-348. https://doi.org/10.1177/0748233710387007.

[75]

L.D. Chi, I. Khan, Z.B. Lin, et al., Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model, Phytomedicine 67 (2020) 153157. https://doi.org/10.1016/j.phymed.2019.153157.

[76]

A. Andoh, A. Nishida, K. Takahashi, et al., Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population, J. Clin. Biochem. Nutr. 59(1) (2016) 65-70. https://doi.org/10.3164/jcbn.15-152.

[77]

E.J.C. Goldstein, K.L. Tyrrell, D.M. Citron, Lactobacillus species: taxonomic complexity and controversial susceptibilities, Clin. Infect. Dis. 60(suppl_2) (2015) S98-S107. https://doi.org/10.1093/cid/civ072.

[78]

Q.X. Liang, Q.C. Zhao, X.T. Hao, et al., The effect of Flammulina velutipes polysaccharide on immunization analyzed by intestinal flora and proteomics, Front. Nutr. 9 (2022) 841230. https://doi.org/10.3389/fnut.2022.841230.

Food Science and Human Wellness
Pages 1828-1840
Cite this article:
Shi C, Cheng C, Lin X, et al. Flammulina velutipes polysaccharide-iron(Ⅲ) complex used to treat iron deficiency anemia after being absorbed via GLUT2 and SGLT1 transporters. Food Science and Human Wellness, 2023, 12(5): 1828-1840. https://doi.org/10.1016/j.fshw.2023.02.047

520

Views

18

Downloads

7

Crossref

5

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 04 January 2022
Revised: 09 February 2022
Accepted: 28 March 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return