AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Lignans from Patrinia scabiosaefolia improve insulin resistance by activating PI-3K/AKT pathway and promoting GLUT4 expression

Zhenhua Liua,b,cMengke WangaLijun MengaYixiao ChenaQiuyi WangaYan Zhangd( )Xuefeng Xia,e( )Wenyi Kanga,b,c( )
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Functional Food Engineering Technology Research Center, Kaifeng 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang 050017, China
College of Physical Education, Henan University, Kaifeng 475004, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Patrinia scabiosaefolia, is used as wild vegetable in China for more than 2 000 years, with a variety of pharmacological activities, including anti-inflammatory, anti-tumor and hypoglycemic. Based on our ongoing research on chemical constituents and hypoglycemic activity of P. scabiosaefolia, 4 lignan compounds, (+)-isolariciresinol (1), 7R,7′R,8S,8′S-(+)-neo-olivil-4-O-β-D-glucopyranoside (2), 4-O-methylcedrusin (3) and patrinian A (4), were isolated and identified. The hypoglycemic activity showed that compounds 2 and 3 could extremely significantly improve insulin resistance at 100 (P < 0.001), 50 (P < 0.001) and 25 µmol/L (P < 0.01) in IR 3T3-L1 cells. While compound 4 only promoted glucose uptake by IR 3T3-L1 cells at 100 µmol/L (P < 0.01). Western blotting experiments showed that compounds 2 and 4 up-regulated the protein expressions of p-IRS, PI-3K, p-AKT and glucose transporter 4 (GLUT4), and promoted the transcription of GLUT4 mRNA. Therefore, the mechanisms of compounds 2 and 4 were presumed to improve IR by activating PI-3K/AKT signaling pathway.

References

[1]

K. Marianna, Milestones in the history of diabetes mellitus: the main contributors, Word J. Diabetes. 7(1) (2016) 1-7. https://doi.org/10.4239/wjd.v7.i1.1.

[2]

N.H. Cho, J.E. Shaw, S. Karuranga, et al., IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract. 138 (2018) 271-281. https://doi.org/10.1016/j.diabres.2018.02.023.

[3]

F. Saadeldeen, Y. Niu, H. Wang, et al., Natural products: regulating glucose metabolism and improving insulin resistance, Food Sci. Hum. Well. 9(3) (2020) 1-15. https://doi.org/10.1016/j.fshw.2020.04.005.

[4]

D. Li, Q. Liu, W. Sun, et al., 1,3,6,7-Tetrahydroxy-8-prenylxanthone ameliorates inflammatory responses resulted in by the paracrine interaction of adipocytes and macrophages, Brit. J. Pharmacol. 175 (2018) 1590-1606. https://doi.org/10.1111/bph.14162.

[5]

C.C. Chen, C.K. Lii, Y.H. Lin, et al., Andrographis paniculata improves insulin resistance in high-fat diet-induced obese mice and TNFα-treated 3T3-L1 adipocytes, Am. J. Chin. Med. 48(5) (2020) 1073-1090. https://doi.org/10.1142/S0192415X20500524.

[6]

A. Molinaro, B. Becattini, A. Mazzoli, et al., Insulin-driven PI3K-AKT signaling in the hepatocyte is mediated by redundant PI3Kα and PI3Kβ activities and is promoted by RAS, Cell Metab. 30 (2019) 1-10. https://doi.org/10.1016/j.cmet.2019.03.010.

[7]

X. Huang, G. Liu, J. Guo, et al., The PI3K/AKT pathway in obesity and type 2 diabetes, Int. J. Biol. Sci. 14(11) (2018) 1483-1496. https://doi.org/10.7150/ijbs.27173.

[8]

T. Joshi, A.K. Singh, P. Haratipour, et al., Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications, J. Cell. Physiol. 234(10) (2019) 17212-17231. https://doi.org/10.1002/jcp.28528.

[9]

L. Meng, S. Chen, L. Zhou, et al., Chemical constituents and pharmacological effects of genus patrinia: a review, Curr. Pharmacol. Rep. 6(6) (2020) 1-35. https://doi.org/10.1007/s40495-020-00240-7.

[10]

Z. Liu, Y. Niu, L. Zhou, et al., Nine unique iridoids and iridoid glycosides from Patrinia scabiosaefolia, Front. Chem. 9 (2021) 657028-657041. https://doi.org/10.3389/fchem.2021.657028.

[11]

Z. Liu, L. Xu, X. Xu, et al., Effects and mechanisms of iridoid glycosides from Patrinia scabiosaefolia on improving insulin resistance in 3T3-L1 adipocytes, Food Chem. Toxicol. 134 (2019) 110806-110811. https://doi.org/10.1016/j.fct.2019.110806.

[12]

A.J. Deng, H.J. Zhang, Z.H. Zhang, et al., Constituents with anti-oxidative activity from seeds of Jufeng grape, China J. Chin. Mater Med. 40(21) (2015) 4208-4211. https://doi.org/10.4268/cjcmm20152117.

[13]

M. Kikuchi, M. Kikuchi, Studies on the constituents of Swertia japonica Makino Ⅱ. On the structures of new glycosides, Chem Pharm Bull. 53(30) (2005) 48-51. https://doi.org/10.1002/chin.200530175.

[14]

L. Pieters, T.D. Bruyne, M. Claeys, et al., Isolation of a dihydrobenzofuran lignan from South American dragon's blood (Croton spp.) as an inhibitor of cell proliferation, J. Nat. Prod. 56(6) (1993) 899-906. https://doi.org/10.1021/np50096a013.

[15]

F. Zhou, K. Furuhashi, M.J. Son, et al., Antidiabetic effect of enterolactone in cultured muscle cells and in type 2 diabetic model db/db mice, Cytotechnology. 63(9) (2017) 493-502. https://doi.org/10.1007/s10616-016-9965-2.

[16]

L. Cui, J. Wang, M. Wang, et al., Chemical composition and glucose uptake effect on 3T3-L1 adipocytes of Ligustrum lucidum Ait. Flowers, Food Sci. Hum. Wellness. 9(2) (2020) 124-129. https://doi.org/10.1016/j.fshw.2020.02.002.

[17]

X. Xu, P. Wang, B. Wang, et al., Glucose absorption regulation and mechanism of the compounds in Lilium lancifolium Thunb. on Caco-2 cells, Food Chem. Toxicol. 149 (2021) 112010-112017. https://doi.org/10.1016/j.fct.2021.112010.

[18]

L. Chen, X. Fan, X. Lin, et al., Phenolic extract from Sonchus oleraceus L. protects diabetes-related liver injury in rats through TLR4/NF-κB Signaling pathway, eFood. 1(1) (2019)77-84. https://doi.org/10.2991/efood.k.191018.002.

[19]

L. Sun, L. Bao, D. Phurbu, et al., Amelioration of metabolic disorders by a mushroom-derived polyphenols correlates with the reduction of Ruminococcaceae in gut of DIO mice, Food Sci. Hum. Well. 10(4) (2021) 442-451. https://doi.org/10.1016/j.fshw.2021.04.006.

[20]

Z. Wei, X. Wen, Z. Yi, et al., Metabolomic study on the preventive effect of Patrinia Scabiosaefolia fisch on multipathogen induced pelvic inflammatory disease in rats, Evid. Based Complement. Altern. Med. 2015 (2015) 170792-170801. https://doi.org/10.1155/2015/170792.

[21]

M. Zhang, G. Sun, A. Shen, et al., Patrinia scabiosaefolia inhibits the proliferation of colorectal cancer in vitro and in vivo via G1/S cell cycle arrest, Oncol. Rep. 33(2) (2015) 856-860. https://doi.org/10.3892/or.2014.3663.

[22]

K. Prasad, Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat, J. Lab. Clin. Med. 138(1) (2001) 32-39. https://doi.org/10.1067/mlc.2001.115717.

[23]

S. Jian, Y. Tang, Y. Xiao, et al., Flaxseed lignans alleviate high fat diet-induced hepatic steatosis and insulin resistance in mice: potential involvement of AMP-activated protein kinase, J. Funct. Foods. 24 (2016) 482-491. https://doi.org/10.1016/j.jff.2016.04.032.

[24]

S. Ghaderi, M. Rashno, A. Nesari, et al., Sesamin alleviates diabetes-associated behavioral deficits in rats: the role of inflammatory and neurotrophic factors, Int. Immunopharmacol. 92 (2021) 107356-107365. https://doi.org/10.1016/j.intimp.2020.107356.

[25]

Z. Lei, I.B. Tan, K. Das, et al., Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil, Gastroenterology. 45(3) (2013) 554-565. https://doi.org/10.1053/j.gastro.2013.05.010.

[26]

M. Feng, F. Liu, J. Xing, et al., Anemarrhena aponins attenuate insulin resistance in rats with high-fat diet-induced obesity via the IRS-1/PI3K/AKT pathway, J. Ethnopharmacol. 277(4) (2021) 114251-114260. https://doi.org/10.1016/j.jep.2021.114251.

[27]

R. Govers, Molecular mechanisms of GLUT4 regulation in adipocytes, Diabetes Metab. 40(6) (2014) 400-410. https://doi.org/10.1016/j.diabet.2014.01.005.

[28]

P.H. Nguyen, T.V.T. Le, H.W. Kang, et al., AMP-activated protein kinase (AMPK) activators from Myristica fragrans (nutmeg) and their anti-obesity effect, Bioorg. Chem. 20(14) (2010) 4128-4131. https://doi.org/10.1016/j.bmcl.2010.05.067.

[29]

M. Bai, G.D. Yao, S.F. Liu, et al., Lignans from a wild vegetable (Patrinina villosa) able to combat Alzheimer's disease, J. Funct. Foods. 28 (2017) 106-113. https://doi.org/10.1016/j.jff.2016.10.024.

[30]

Y. Zhu, R.Z. Huang, C.G. Wang, et al., New inhibitors of matrix metalloproteinases 9 (MMP-9): lignans from Selaginella moellendorffii, Fitoterapia. 130 (2018) 281-289. https://doi.org/10.1016/j.fitote.2018.09.008.

[31]

C. Zhao, J. Chen, J. Shao, et al., Neolignan constituents with potential beneficial effects in prevention of type 2 diabetes from Viburnum fordiae Hance fruits, J. Agric. Food Chem. 66(40) (2018) 10421-10430. https://doi.org/10.1021/acs.jafc.8b03772.

Food Science and Human Wellness
Pages 2014-2021
Cite this article:
Liu Z, Wang M, Meng L, et al. Lignans from Patrinia scabiosaefolia improve insulin resistance by activating PI-3K/AKT pathway and promoting GLUT4 expression. Food Science and Human Wellness, 2023, 12(6): 2014-2021. https://doi.org/10.1016/j.fshw.2023.03.015

687

Views

28

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 03 March 2022
Revised: 31 March 2022
Accepted: 17 May 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return