AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Review on mechanisms and structure-activity relationship of hypoglycemic effects of polysaccharides from natural resources

Xiaolong Jia,b,cJianhang GuoaTengzheng CaoaTingting ZhangaYanqi Liua,b,c( )Yizhe Yana,b,c,d( )
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou 450001,China
Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450001, China
Show Author Information

Abstract

Diabetes mellitus (DM) is a common multifactorial disease, causing various complications, such as chronic metabolism. The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect. However, polysaccharides mainly extracted from natural resources, have advantages of safety, accessibility, and anti-diabetic potential. We have summarized recent research of natural polysaccharides with hypoglycemic activities, focusing on different pharmacological mechanisms in various cell and animal models. The relationships of structure-hypoglycemic effect are also discussed in detail. This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus, which have been required by clinical studies yet.

References

[1]

A.B. Meneguin, A.L.P. Silvestre, L. Sposito, et al., The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of diabetes mellitus: a review, Carbohyd. Polym. 256 (2021) 117504. https://doi.org/10.1016/j.carbpol.2020.117504.

[2]

P. Saeedi, I. Petersohn, P. Salpea, et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition, Diabetes Res. Clin. Pr. 157 (2019) 107843. https://doi.org/10.1016/j.diabres.2019.107843.

[3]

K. Ganesan, B. Xu, Anti-diabetic effects and mechanisms of dietary polysaccharides, Molecules 24 (2019) 2556. https://doi.org/10.3390/molecules24142556.

[4]

S. Schinner, Diabetes mellitus, fasting glucose, andrisk of cause-specific death, New Engl. J. Med. 364 (2011) 829-841. https://doi.org/10.1056/NEJMoa1008862.

[5]

M. Jayachandran, T. Zhang, K. Ganesan, et al., Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats, Eur. J. Pharmacol. 829 (2018) 112-120. https://doi.org/10.1016/j.ejphar.2018.04.015.

[6]

P.C. Wang, S. Zhao, B.Y. Yang, et al., Anti-diabeticpolysaccharides from natural sources: a review, Carbohyd. Polym. 148 (2016) 86-97. https://doi.org/10.1016/j.carbpol.2016.02.060.

[7]

J.H. Xie, M.L. Jin, G.A. Morris, et al., Advances on bioactive polysaccharides from medicinal plants, Crit-Rev. Food Sci. 56 (2016) 60-84. https://doi.org/10.1080/10408398.2015.1069255.

[8]

Z.H. Yin, Z.H. Liang, C.Q. Li, et al., Immunomodulatory effects of polysaccharides from edible fungus: a review, Food Sci. Hun. Well. 10 (2021) 393-400. https://doi.org/10.1016/j.fshw.2021.04.001.

[9]

J. Qu, P. Huang, L. Zhang, et al., Hepatoprotective effect of plant polysaccharides from natural resources: a review of the mechanisms and structure-activity relationship, Int. J. Biol. Macromol. 161 (2020) 24-34. https://doi.org/10.1016/j.ijbiomac.2020.05.196.

[10]

C. Hou, L. Chen, L. Yang, et al., An insight into anti-inflammatory effects of natural polysaccharides, Int. J. Biol. Macromol. 153 (2020) 248-255. https://doi.org/10.1016/j.ijbiomac.2020.02.315.

[11]

Z.J. Wang, J.H. Xie, S.P. Nie, et al., Review on cell models to evaluate the potential antioxidant activity of polysaccharides, Food Funct. 8 (2017) 915-926. https://doi.org/10.1039/c6fo01315e.

[12]

T. Khan, A. Date, H. Chawda, et al., Polysaccharides as potential anticancer agents-a review of their progress, Carbohyd. Polym. 210 (2019) 412-428. https://doi.org/10.1016/j.carbpol.2019.01.064.

[13]

R. Priyanka, C. Sumana, S. Prerona, Immunomodulatory activity of natural polysaccharides in combating Covid -19, cancer, inflammatory disorders: a review, Int. J. Pharma Bio Sci. 20 (2020) 191-206. https://doi.org/10.22376/ijpbs/lpr.2020.10.5.P191-206.

[14]

Z.C. Wang, Q. Sun, H.R. Zhang, et al., Insight into antibacterial mechanism of polysaccharides: a review, LWT-Food Sci. Technol. 150 (2021) 111929. https://doi.org/10.1016/j.lwt.2021.111929.

[15]

M.T. Xie, W.L. Tao, F.J. Wu, et al., Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: a review, Int. J. Biol. Macromol. 185 (2021) 917-934. https://doi.org/10.1016/j.ijbiomac.2021.07.008.

[16]

C. Yin, G.D. Noratto, X. Fan, et al., The impact of mushroom polysaccharides on gut microbiota and its beneficial effects to host: a review, Carbohyd. Polym. 250 (2020) 116942. https://doi.org/10.1016/j.carbpol.2020.116942.

[17]

Q. Song, Y. Wang, L. Huang, et al., Review of the relationships among polysaccharides, gut microbiota, and human health, Food Res. Int. 140 (2021) 109858. https://doi.org/10.1016/j.foodres.2020.109858.

[18]

H. Panwar, H.M. Rashmi, V.K. Batish, et al., Probiotics as potential biotherapeutics in the management of type 2 diabetes-prospects and perspectives, Diabetes. Metab. Res. 29 (2013) 103-112. https://doi.org/10.1002/dmrr.2376.

[19]

L.N. Yang, L. Li, X.G. Wu, et al., The effect of natural soluble polysaccharides on the Type 2 diabetes through modulating gut microbiota: a review, Current. Med. Chem. 28 (2021) 5368-5385. https://doi.org/10.2174/0929867328666210309110352.

[20]

J. Qin, Y. Li, Z. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. https://doi.org/10.1038/nature11450.

[21]

Q. Li, J. Hu, Q. Nie, et al., Hypoglycemic mechanism of polysaccharide from Cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration, Sci. China Life Sci. 64 (2021) 117-132. https://doi.org/10.1007/s11427-019-1647-6.

[22]

Y. Yuan, J. Zhou, Y. Zheng, et al., Beneficial effectsof polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice, Biomed. Pharmacother. 127 (2020) 110182. https://doi.org/10.1016/j.biopha.2020.110182.

[23]

W.L. Guo, J.C. Deng, Y.Y. Pan, et al., Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin, Int. J. Biol. Macromol. 153 (2020) 1231-1240. https://doi.org/10.1016/j.ijbiomac.2019.10.253.

[24]

S. Xu, Y. Dou, B. Ye, et al., Ganoderma lucidum polysaccharides improve insulin sensitivity by regulating inflammatory cytokines and gut microbiota composition in mice, J. Funct. Foods 38 (2017) 545-552. https://doi.org/10.1016/j.jff.2017.09.032.

[25]

Q.X. Nie, H.H. Chen, J.L. Hu, et al., Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota, Crit. Rev. Food Sci. Nutr. 59 (2019) 848-863. https://doi.org/10.1080/10408398.2018.1536646.

[26]

K. Wang, H. Wang, Y. Liu, et al., Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism, J. Funct. Foods 40 (2018) 261-271. https://doi.org/10.1016/j.jff.2017.11.004.

[27]

X.S. Long, S.T. Liao, P. Wen, et al., Superior hypoglycemic activity of mulberry lacking monosaccharides is accompanied by better activation of the PI3K/Akt and AMPK signaling pathways, Food Funct. 11 (2020) 4249-4258. https://doi.org/10.1039/d0fo00427h.

[28]

Z.F. Wang, Y.Y. Wang, Y.H. Han, et al., Akt is a critical node of acute myocardial insulin resistance and cardiac dysfunction after cardiopulmonary bypass, Life Sci. 234 (2019) 116734. https://doi.org/10.1016/j.lfs.2019.116734.

[29]

C. Cao, B. Zhang, C. Li, et al., Structure and in vitro hypoglycemic activity of a homogenous polysaccharide purified from Sargassum pallidum, Food Funct. 10 (2019) 2828-2838. https://doi.org/10.1039/c8fo02525h.

[30]

L.Y. Wang, Y. Wang, D.S. Xu, et al., MDG-1, a polysaccharide from Ophiopogon japonicus exerts hypoglycemic effects through the PI3K/Akt pathway in a diabetic KKAy mouse model, J. Ethnopharmacol. 143 (2012) 347-354. https://doi.org/10.1016/j.jep.2012.06.050.

[31]

H. Ye, Z. Shen, J. Cui, et al., Hypoglycemic activity and mechanism of the sulfated rhamnose polysaccharides chromium (Ⅲ) complex in type 2 diabetic mice, Bioorg. Chem. 88 (2019) 102942. https://doi.org/10.1016/j.bioorg.2019.102942.

[32]

B.D. Manning, L.C. Cantley, AKT/PKB signaling: navigating downstream, Cell 129 (2007) 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009.

[33]

J. Wu, M. Chen, S. Shi, et al., Hypoglycemic effect and mechanism of a pectic polysaccharide with hexenuronic acid from the fruits of Ficus pumila L. in C57BL/KsJ db/db mice, Carbohydr. Polym. 18 (2017) 209-220. https://doi.org/10.1016/j.carbpol.2017.09.050.

[34]

Y. Hao, H. Sun, X. Zhang, et al., A novel polysaccharide from Pleurotus citrinopileatus mycelia: structural characterization, hypoglycemic activity and mechanism, Food Biosci. 37 (2020) 100735. https://doi.org/10.1016/j.fbio.2020.100735.

[35]

M.T. Kuang, J.Y. Li, X.B. Yang, et al., Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale, Carbohydr. Polym. 241 (2020) 116326. https://doi.org/10.1016/j.carbpol.2020.116326.

[36]

Y. Chen, D. Liu, D. Wang, et al., Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice, Food Chem. Toxicol. 126 (2019) 295-302. https://doi.org/10.1016/j.fct.2019.02.034.

[37]

Y. Gong, J. Zhang, F. Gao, et al., Structure features and in vitro hypoglycemic activities of polysaccharides from different species of Maidong, Carbohydr. Polym. 173 (2017) 215-222. https://doi.org/10.1016/j.carbpol.2017.05.076.

[38]

M. Huang, F. Wang, X. Zhou, et al., Hypoglycemic and hypolipidemic properties of polysaccharides from Enterobacter cloacae Z0206 in KKAy mice, Carbohydr. Polym. 117 (2015) 91-98. https://doi.org/10.1016/j.carbpol.2014.09.008.

[39]

Z. Gao, D. Kong, W. Cai, et al., Characterization and anti-diabetic nephropathic ability of mycelium polysaccharides from Coprinus comatus, Carbohydr. Polym. 251 (2021) 117081. https://doi.org/10.1016/j.carbpol.2020.117081.

[40]

W. Hu, J. Wang, W. Guo, et al., Studies on characteristics and anti-diabetic and -nephritic effects of polysaccharides isolated from Paecilomyces hepiali fermentation mycelium in db/db mice, Carbohydr. Polym. 23 (2020) 115766. https://doi.org/10.1016/j.carbpol.2019.115766.

[41]

K. Papoutsis, J. Zhang, M.C. Bowyer, et al., Fruit, vegetables, and mushrooms for the preparation of extracts with alpha-amylase and alpha-glucosidase inhibition properties: a review, Food Chem. 38 (2021) 128119. https://doi.org/10.1016/j.foodchem.2020.128119.

[42]

R. Tundis, M.R. Loizzo, F. Menichini, Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update, Mini Rev. Med. Chem. 10 (2010) 315-331. https://doi.org/10.2174/138955710791331007.

[43]

J. Cheng, J. Song, H. Wei, et al., Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia, Int. J. Biol. Macromol. 164 (2020) 3305-3314. https://doi.org/10.1016/j.ijbiomac.2020.08.202.

[44]

S. Feng, D. Luan, K. Ning, et al., Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi, Int. J. Biol. Macromol. 135 (2019) 141-151. https://doi.org/10.1016/j.ijbiomac.2019.05.129.

[45]

L.C. Pan, Y.M. Zhu, Z.Y. Zhu, et al., Chemical structure and effects of antioxidation and againstα-glucosidase of natural polysaccharide from Glycyrrhiza inflata Batalin, Int. J. Biol. Macromol. 155 (2020) 560-571. https://doi.org/10.1016/j.ijbiomac.2020.03.192.

[46]

S.S. Gu, H.Q. Sun, X.L. Zhang, et al., Structural characterization and inhibitions on α-glucosidase and α-amylase of alkali-extracted water-soluble polysaccharide from Annona squamosa residue, Int. J. Biol. Macromol. 166 (2021) 730-740. https://doi.org/10.1016/j.ijbiomac.2020.10.230.

[47]

Y.L. Hao, H.Q. Sun, X.J. Zhang, et al., A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: hypoglycemic activity in vitro and chemical structure, J. Mol. Struct. 1220 (2020) 128717. https://doi.org/10.1016/j.molstruc.2020.128717.

[48]

X.M. Zheng, H.Q. Sun, L.R. Wu, et al., Structural characterization and inhibition on α-glucosidase of the polysaccharides from fruiting bodies and mycelia of Pleurotus eryngii, Int. J. Biol. Macromol. 156 (2020) 1512-1519. https://doi.org/10.1016/j.ijbiomac.2019.11.199.

[49]

Y. Ru, X. Chen, J. Wang, et al., Structural characterization, hypoglycemic effects and mechanism of a novel polysaccharide from Tetrastigma hemsleyanum Diels et Gilg, Int. J. Biol. Macromol. 123 (2019) 775-783. https://doi.org/10.1016/j.ijbiomac.2018.11.085.

[50]

C. Cao, C. Li, Q. Chen, et al., Physicochemical characterization, potential antioxidant and hypoglycemic activity of polysaccharide from Sargassum pallidum, Int. J. Biol. Macromol. 139 (2019) 1009-1017. https://doi.org/10.1016/j.ijbiomac.2019.08.069.

[51]

J. Chen, L. Li, X. Zhou, et al., Preliminary characterization and antioxidant and hypoglycemic activities in vivo of polysaccharides from Huidouba, Food Funct. 9 (2018) 6337-6348. https://doi.org/10.1039/c8fo01117f.

[52]

L. Wang, C. Chen, B. Zhang, et al., Structural characterization of a novel acidic polysaccharide from Rosa roxburghii Tratt fruit and its alpha-glucosidase inhibitory activity, Food Funct. 9 (2018) 3974-3985. https://doi.org/10.1039/c8fo00561c.

[53]

S. BelHadj, O. Hentati, A. Elfeki, et al., Inhibitory activities of Ulva lactucapolysaccharides on digestive enzymes related to diabetes and obesity, Arch. Physiol. Biochem. 119 (2013) 81-87. https://doi.org/10.3109/13813455.2013.775159.

[54]

C. Xiao, Q. Wu, Y. Xie, et al., Hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 in db/db mice via RNA-seq and iTRAQ, Food Funct. 9 (2018) 6495-6507. https://doi.org/10.1039/c8fo01656a.

[55]

X.L. Shang, L.C. Pan, Y. Tang, et al., 1H NMR-based metabonomics of the hypoglycemic effect of polysaccharides from Cordyceps militaris on streptozotocin-induced diabetes in mice, Nat. Prod. Res. 34 (2020) 1366-1372. https://doi.org/10.1080/14786419.2018.1516216.

[56]

K. Ganesan, B.J. Xu, Anti-obesity effects of medicinal and edible mushrooms, Molecules 23 (2018) 2880. https://doi.org/10.3390/molecules23112880.

[57]

J. Zhu, W. Liu, J. Yu, et al., Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L, Carbohydr. Polym. 98 (2013) 8-16. https://doi.org/10.1016/j.carbpol.2013.04.057.

[58]

X. Chen, J. Jin, J. Tang, et al., Extraction, purification, characterization and hypoglycemic activity of a polysaccharide isolated from the root of Ophiopogon japonicus, Carbohyd. Polym. 83 (2011) 749-754. https://doi.org/10.1016/j.carbpol.2010.08.050.

[59]

T. Chen, M. Zhang, J. Li, et al., Structural characterization and hypoglycemic activity of Trichosanthes peel polysaccharide, LWT-Food Sci. Technol. 70 (2016) 55-62. https://doi.org/10.1016/j.lwt.2016.02.024.

[60]

X.H. Chen, Y.H. Liu, X. Bai, et al., Hypoglycemic polysaccharides from the tuberous root of Liriope spicata, J. Nat. Prod. 72 (2009) 1988-1992. https://doi.org/10.1021/np900346d.

[61]

R. Jin, Y. Guo, B. Xu, et al., Physicochemical properties of polysaccharides separated from Camellia oleifera Abel seed cake and its hypoglycemic activity on streptozotocin-induced diabetic mice, Int. J. Biol. Macromol. 125 (2019) 1075-1083. https://doi.org/10.1016/j.ijbiomac.2018.12.059.

[62]

S. Chen, B.M. Khan, K.L. Cheong, et al., Pumpkin polysaccharides: purification, characterization and hypoglycemic potential, Int. J. Biol. Macromol. 139 (2019) 842-849. https://doi.org/10.1016/j.ijbiomac.2019.08.053.

[63]

W. Liu, X. Lv, W. Huang, et al., Characterization and hypoglycemic effect of a neutral polysaccharide extracted from the residue of Codonopsis pilosula, Carbohydr. Polym. 197 (2018) 215-226. https://doi.org/10.1016/j.carbpol.2018.05.067.

[64]

W. Liu, W. Lu, Y. Chai, et al., Preliminary structural characterization and hypoglycemic effects of an acidic polysaccharide SERP1 from the residue of Sarcandra glabra, Carbohydr. Polym. 176 (2017) 140-151. https://doi.org/10.1016/j.carbpol.2017.08.071.

[65]

S. Zou, X. Zhang, W. Yao, et al., Structure characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L, Carbohydr. Polym. 80 (2010) 1161-1167. https://doi.org/10.1016/j.carbpol.2010.01.038.

[66]

H. Tong, Z. Liang, G. Wang, Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L, Carbohydr. Polym. 71 (2008) 316-323. https://doi.org/10.1016/j.carbpol.2007.06.001.

[67]

F. Li, Y. Wei, L. Liang, et al., A novel low-molecular-mass pumpkin polysaccharide: structural characterization, antioxidant activity, and hypoglycemic potential, Carbohydr. Polym. 251 (2021) 117090. https://doi.org/10.1016/j.carbpol.2020.117090.

[68]

X. Chen, L. Qian, B. Wang, et al., Synergistic hypoglycemic effects of pumpkin polysaccharides and puerarin on type ii diabetes mellitus mice, Molecules 24 (2019) 955. https://doi.org/10.3390/molecules24050955.

[69]

Q. Yuan, Y. Yuan, Y. Zheng, et al., Anti-cerebral ischemia reperfusion injury of polysaccharides: a review of the mechanisms, Biomed. Pharmacother. 137 (2021) 111303. https://doi.org/10.1016/j.biopha.2021.111303.

[70]

J. Hu, W.S. Pang, J.L. Chen, et al., Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla, BMC Complement. Altern. Med. 13 (2013) 267. https://doi.org/10.1186/1472-6882-13-267.

[71]

Y. Xu, X. Niu, N. Liu, et al., Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits, Food Chem. 243 (2018) 26-35. https://doi.org/10.1016/j.foodchem.2017.09.107.

[72]

C. Wang, W. Li, Z. Chen, et al., Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, alpha-amylase and alpha-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus, Food Res. Int. 103 (2018) 280-288. https://doi.org/10.1016/j.foodres.2017.10.058.

[73]

A. Zeng, R. Yang, S. Yu, et al., A novel hypoglycemic agent: polysaccharides from laver (Porphyra spp.), Food Funct. 11 (2020) 9048-9056. https://doi.org/10.1039/d0fo01195a.

[74]

Q.W. Zhong, T.S. Zhou, W.H. Qiu, et al., Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida, Food Chem. 341 (2021) 128148. https://doi.org/10.1016/j.foodchem.2020.128148.

[75]

C. Chen, L.J. You, A.M. Abbasi, et al., Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro, Food Funct. 7 (2016) 530-539. https://doi.org/10.1039/c5fo01114k.

[76]

M. Wu, W. Li, Y. Zhang, et al., Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste, Carbohydr. Polym. 253 (2021) 117190. https://doi.org/10.1016/j.crbpol.2020.117190.

[77]

C. Cao, Q. Huang, B. Zhang, et al., Physicochemical characterization and in vitro hypoglycemic activities of polysaccharides from Sargassum pallidum by microwave-assisted aqueous two-phase extraction, Int. J. Biol. Macromol. 109 (2018) 357-368. https://doi.org/10.1016/j.ijbiomac.2017.12.096.

[78]

Z. Wang, Structure of polysaccharides from the fruiting body of Hericium erinaceus Pers, Carbohydr. Polym. 57 (2004) 241-247. https://doi.org/10.1016/j.carbpol.2004.04.018.

[79]

Y. Hao, H. Sun, X. Zhang, et al., A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: hypoglycemic activity in vitro and chemical structure, J. Mol. Struct. 1220 (2020) 128717. https://doi.org/10.1016/j.molstruc.2020.128717.

[80]

F. Wang, W. Wang, X. Niu, et al., Isolation and structural characterization of a second polysaccharide from Bulbs of Lanzhou Lily, Appl. Biochem. Biotech. 186 (2018) 535-546. https://doi.org/10.1007/s12010-018-2750-2.

[81]

R.B. Jia, Z.R. Li, Z.R. Ou, et al., Physicochemical characterization of Hizikia fusiforme polysaccharide and its hypoglycemic activity via mediating insulin-stimulated blood glucose utilization of skeletal muscle in type 2 diabetic rats, Chem. Biodivers. 17 (2020) e2000367. https://doi.org/10.1002/cbdv.202000367.

[82]

X. Ji, B. Peng, H. Ding, et al., Purification, structure and biological activity of pumpkin polysaccharides: a review, Food Rev. Int. (2021) 1-13. https://doi.org/10.1080/87559129.2021.1904973.

[83]

H. Huang, G. Huang, Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides, Chem. Biol. Drug Des. 96 (2020) 1209-1222. https://doi.org/10.1111/cbdd.13794.

[84]

G.K. Liu, T.X. Yang, J.R. Wang, Polysaccharides from polyporus umbellatus: a review on their extraction, modification, structure, and bioactivities, Int. J. Biol. Macromol. 189 (2021) 124-134. https://doi.org/10.1016/j.ijbiomac.2021.08.101.

[85]

I.P.S. Fernando, D. Kim, J.W. Nah, et al., Advances in functionalizing fucoidans and alginates (bio)polymers by structural modifications: a review, Chem. Eng. J. 355 (2019) 33-48. https://doi.org/10.1016/j.cej.2018.08.115.

[86]

N.N. Shah, N. Soni, R.S. Singhal, Modification of proteins and polysaccharides using dodecenyl succinic anhydride: synthesis, properties and applications-a review, Int. J. Biol. Macromol. 107 (2018) 2224-2233. https://doi.org/10.1016/j.ijbiomac.2017.10.099.

[87]

M.U. Kakar, I.U. Kakar, M.Z. Mehboob, et al., A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications, Carbohydr. Polym. 252 (2021) 117113. https://doi.org/10.1016/j.carbpol.2020.117113.

[88]

Y. Wang, G. Hou, J. Li, et al., Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp, Process Biochem. 72 (2018) 177-187. https://doi.org/10.1016/j.procbio.2018.06.002.

[89]

Y. Wang, Y. Peng, X. Wei, et al., Sulfation of tea polysaccharides: synthesis, characterization and hypoglycemic activity, Int. J. Biol. Macromol. 46 (2010) 270-274. https://doi.org/10.1016/j.ijbiomac.2009.12.007.

[90]

W. Liu, C. Hu, Y. Liu, et al., Preparation, characterization, and alpha-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai, Int. J. Biol. Macromol. 99 (2017) 454-464. https://doi.org/10.1016/j.ijbiomac.2017.02.065.

[91]

Y. Xu, F. Ting, L. Wang, et al., Effects of acetylation modification on structural characteristics and bioactivities of polysaccharides from Black Currant, Fine Chemicals 36 (2019) 2467-2475. https://doi.org/10.13550/j.jxhg.20190282.

[92]

M.L. Garron, M. Cygler, Structural and mechanistic classification of uronic acid-containing polysaccharide lyases, Glycobiology 20 (2010) 1547-1573. https://doi.org/10.1093/glycob/cwq122.

[93]

C. Hou, M. Yin, P. Lan, et al., Recent progress in the research of Angelica sinensis (Oliv.) Diels polysaccharides: extraction, purification, structure and bioactivities, Chem. Biol. Technol. Ag. 8 (2021) 13. https://doi.org/10.1186/s40538-021-00214-x.

[94]

X. Ji, C. Hou, Y. Yan, et al., Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit, Int. J. Biol. Macromol. 149 (2020) 1008-1018. https://doi.org/10.1016/j.ijbiomac.2020.02.018.

[95]

J. Zhu, Z. Chen, H. Zhou, et al., Effects of extraction methods on physicochemical properties and hypoglycemic activities of polysaccharides from coarse green tea, Glycoconjugate J. 37 (2020) 241-250. https://doi.org/10.1007/s10719-019-09901-2.

[96]

M.H. Tan, S.L. Chang, J.N. Liu, et al., Physicochemical properties, antioxidant and antidiabetic activities of polysaccharides from Quinoa (Chenopodium quinoa Willd.) seeds, Molecules 25 (2020) 3840. https://doi.org/10.3390/molecules25173840.

Food Science and Human Wellness
Pages 1969-1980
Cite this article:
Ji X, Guo J, Cao T, et al. Review on mechanisms and structure-activity relationship of hypoglycemic effects of polysaccharides from natural resources. Food Science and Human Wellness, 2023, 12(6): 1969-1980. https://doi.org/10.1016/j.fshw.2023.03.017

841

Views

53

Downloads

80

Crossref

76

Web of Science

77

Scopus

1

CSCD

Altmetrics

Received: 01 August 2021
Revised: 22 August 2021
Accepted: 07 October 2021
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return