AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells

Lingchao MiaoaHaolin ZhangaMeng Sam CheongaRuting ZhongaPaula Garcia-OliveirabMiguel A. PrietobKa-Wing ChengcMingfu Wangc,dHui Caob,eShaoping NiefJesus Simal-GandarabWai San Cheanga( )Jianbo Xiaob,g( )
Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities. In this study, apigenin, luteolin, and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant (IR) HepG2 cells. All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4 (GLUT4) and phosphor-glycogen synthase kinase (GSK-3β). These flavonoids significantly inhibited the production of reactive oxygen species (ROS) and advanced glycation end-products (AGEs), which were closely related to the suppression of the phosphorylation form of NF-κB and P65. The expression levels of insulin receptor substrate-1 (IRS-1), insulin receptor substrate-2 (IRS-2) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells were all partially activated by the flavonoids, with variable effects. Furthermore, the intracellular metabolic conditions of the flavonoids were also evaluated.

References

[1]

K.M. Bullard, C.C. Cowie, S.E. Lessem, et al., Prevalence of diagnosed diabetes in adults by diabetes type-United States, 2016, MMWR Morb. Mortal Wkly Rep. 67 (2018) 359-361. https://doi.org/10.15585/mmwr.mm6712a2.

[2]

J.M. Forbes, M.E. Cooper, Mechanisms of diabetic complications, Physiological Reviews 93(1) (2013) 137-188. http://doi.org/10.1152/physrev.00045.2011.

[3]

C. Bommer, V. Sagalova, E. Heesemann, et al., Global economic burden of diabetes in adults: projections from 2015 to 2030, Diabetes Care 41 (2018) 963-970. https://doi.org/10.2337/dc17-1962.

[4]

C.J. Ramnanan, D.S. Edgerton, G. Kraft, et al., Physiologic action of glucagon on liver glucose metabolism, Diabetes, Obesity and Metabolism 13 (2011) 118-125. https://doi.org/10.1111/j.1463-1326.2011.01454.x.

[5]

X. Dong, S. Park, X. Lin, et al., Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth, The J. Clin. Invest. 116 (2006) 101-114. https://doi.org/10.1172/JCI25735.

[6]

C.M. Taniguchi, K. Ueki, C.R. Kahn, Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism, The J. Clin. Invest. 115 (2005) 718-727. https://doi.org/10.1172/JCI23187.

[7]

S. Paradis, G. Ruvkun, Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor, Genes Dev. 12 (1998) 2488-2498. http://doi.org/10.1101/gad.12.16.2488.

[8]

A. Mora, K. Sakamoto, E.J. McManus, et al., Role of the PDK1-PKB-GSK3 pathway in regulating glycogen synthase and glucose uptake in the heart, FEBS Lett. 579 (2005) 3632-3638. https://doi.org/10.1016/j.febslet.2005.05.040.

[9]

T. Kadowaki, K. Ueki, T. Yamauchi, et al., SnapShot: insulin signaling pathways, Cell 148 (2012) 624. http://doi.org/10.1016/j.cell.2012.01.034.

[10]

A. Kabat, K. Ponicke, A. Salameh, et al., Effect of a beta 2-adrenoceptor stimulation on hyperglycemia-induced endothelial dysfunction, J. Pharmacol. Exp Ther. 308 (2004) 564-573. http://doi.org/10.1124/jpet.103.057554.

[11]

G. Basta, G. Lazzerini, S.D. Turco, et al., At Least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products, Arteriosclerosis, Thrombosis, and Vascular Biology. 25 (2005) 1401-1407. https://doi.org/10.1161/01.ATV.0000167522.48370.5e.

[12]

P.K. Bagul, N. Deepthi, R. Sultana, et al., Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFκB-p65 and histone 3, J. Nutr. Biochem. 26 (2015) 1298-1307. https://doi.org/10.1016/j.jnutbio.2015.06.006.

[13]

O.M. Agunloye, G. Oboh, Blood glucose lowering and effect of oyster (Pleurotus ostreatus)- and shiitake (Lentinus subnudus)-supplemented diet on key enzymes linked diabetes and hypertension in streptozotocin-induced diabetic in rats, Food Frontiers 3 (2022) 161-171. https://doi.org/10.1002/fft2.111.

[14]

Y. Jan, M. Malik, V. Sharma, et al., Utilization of whey for formulation of whey jamun juice ice pops with antidiabetic potential, Food Frontiers 2 (2021) 486-493. https://doi.org/10.1002/fft2.90.

[15]

C. Zhao, S. Lai, D. Wu, et al., miRNAs as regulators of antidiabetic effects of fucoidans, eFood 1 (2020) 2-11. https://doi.org/10.2991/efood.k.190822.001.

[16]

F. Zhu, J. Li, Z. Ma, et al., Structural identification and in vitro antioxidant activities of anthocyanins in black chokeberry (Aronia melanocarpa lliot), eFood 2 (2021) 201-208. https://doi.org/10.53365/efood.k/143829.

[17]

J. Higbee, P. Solverson, M. Zhu, et al., The emerging role of dark berry polyphenols in human health and nutrition, Food Frontiers 3 (2022) 3-27. https://doi.org/10.1002/fft2.128.

[18]

J. Zhang, X. Chen, X. Mu, et al., Protective effects of flavonoids isolated from Agrocybe aegirita on dextran sodium sulfate-induced colitis, eFood 2 (2021) 288-295. https://doi.org/10.53365/efood.k/147240.

[19]

H. Khan, H. Ullah, R. Tundis, et al., Dietary flavonoids in the management of huntington's disease: mechanism and clinical perspective, eFood 1 (2020) 38-52. https://doi.org/10.2991/efood.k.200203.001.

[20]

J.K. Prasain, S. Barnes, J.M. Wyss, Kudzu isoflavone C-glycosides: analysis, biological activities, and metabolism, Food Frontiers 2 (2021) 383-389. https://doi.org/10.1002/fft2.105.

[21]

T.F. Rambaran, A. Nordström, Medical and pharmacokinetic effects of nanopolyphenols: a systematic review of clinical trials, Food Frontiers 2 (2021) 140-152. https://doi.org/10.1002/fft2.72.

[22]

L. Liu, L. Zhang, L. Ren, et al., Advances in structures required of polyphenols for xanthine oxidase inhibition, Food Frontiers 1 (2020) 152-167. https://doi.org/10.1002/fft2.27.

[23]

C. Sun, C. Zhao, E.C. Guven, et al., Dietary polyphenols as antidiabetic agents: Advances and opportunities, Food Frontiers 1 (2020) 18-44. https://doi.org/10.1002/fft2.15.

[24]

X. Liu, Y. Fu, Q. Ma, et al., Anti-diabetic effects of different phenolic-rich fractions from Rhus chinensis Mill. fruits in vitro, eFood 2 (2021) 37-46. https://doi.org/10.2991/efood.k.210222.002.

[25]

C. Zhao, X. Wan, S. Zhou, et al., Natural polyphenols: a potential therapeutic approach to hypoglycemia, eFood 1 (2020) 107-118. https://doi.org/10.2991/efood.k.200302.001.

[26]

L. Yang, Y. Gao, J. Gong, et al., Myricetin ameliorated prediabetes via immunomodulation and gut microbiota interaction, Food Frontiers (2022) 1-24. https://doi.org/10.1002/fft2.152.

[27]

L. Chen, H.Teng, H. Cao, Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells, Food and Chem. Toxic. 127 (2019) 182-187. https://doi.org/10.1016/j.fct.2019.03.038.

[28]

P.C.H. Hollman, Absorption, bioavailability, and metabolism of flavonoids, Pharmaceutical Biology 42(Sup1) (2004) 74-83. https://dx.doi.org/10.3109/13880200490893492.

[29]

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods 65 (1983) 55-63. https://dx.doi.org/10.1016/0022-1759(83)90303-4.

[30]

R.T. Watson, M. Kanzaki, J.E. Pessin, Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes, Endocrine Reviews 25 (2004) 177-204. https://doi.org/10.1210/er.2003-0011.

[31]

S. Huang, M.P. Czech, The GLUT4 glucose transporter, Cell Metab. 5 (2007) 237-252. https://doi.org/10.1016/j.cmet.2007.03.006.

[32]

E. ter Haar, J.T. Coll, D.A. Austen, et al., Structure of GSK3β reveals a primed phosphorylation mechanism, Nature Structural Biology 8 (2001) 593-596. https://doi.org/10.1038/89624.

[33]

S. Gao, Q. Guo, C. Qin, et al., Sea buckthorn fruit oil extract alleviates insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus cells and rats, J. Agr. Food Chem. 65 (2017) 1328-1336. https://doi.org/10.1021/acs.jafc.6b04682.

[34]

X. Huang, G. Liu, J. Guo, et al., The PI3K/AKT pathway in obesity and type 2 diabetes, Int. J. Biol. Sci. 14 (2018) 1483-1496. https://doi.org/10.7150/ijbs.27173.

[35]

S. Yamagishi, S. Maeda, T. Matsui, et al., Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes, Biochim. Biophys. Acta. 1820 (2012) 663-671. https://doi.org/10.1016/j.bbagen.2011.03.014.

[36]

M.P. Wautier, O. Chappey, S. Corda, et al., Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE, American Journal of Physiology-Endocrinology and Metabolism 280 (2001) E685-E94. https://dx.doi.org/10.1152/ajpendo.2001.280.5.E685.

[37]

J. Xiao, P. Hogger, Metabolism of dietary flavonoids in liver microsomes, Curr. Drug Metab. 14 (2013) 381-391. http://doi.org/10.2174/1389200211314040003.

[38]

L. Miao, C. Liu, M.S. Cheong, et al., Exploration of natural flavones’ bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus, Crit. Rev. Food Sci. (2022) 1-28. https://doi.org/10.1080/10408398.2022.2095349.

[39]

X. Zhu, W. Ouyang, Y. Lan, et al., Anti-hyperglycemic and liver protective effects of flavonoids from Psidium guajava L. (guava) leaf in diabetic mice, Food Biosci. 35 (2020) 100574. https://doi.org/10.1016/j.fbio.2020.100574.

[40]

H.S. Han, G. Kang, J.S. Kim, et al., Regulation of glucose metabolism from a liver-centric perspective, Experimental Molecular Medicine 48 (2016) e218. https://doi.org/10.1038/emm.2015.122.

[41]

C. Meyer, M. Stumvoll, V. Nadkarni, et al., Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus, The J. Clin. Invest. 102 (1998) 619-624. http://dx.doi.org/10.1172/JCI2415.

[42]

Y. Liu, M. Dong, Z. Yang, et al., Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway, Intern. J. Biolog. Macrom. 89 (2016) 484-488. https://doi.org/10.1016/j.ijbiomac.2016.05.015.

[43]

J.M. Shieh, H.T. Wu, K.C. Cheng, et al., Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCζ-Akt-GSK3β pathway in hepatic cells, J. Pineal Res. 47 (2009) 339-344. https://doi.org/10.1111/j.1600-079X.2009.00720.x.

[44]

K.R. Wick, E.D. Werner, P. Langlais, et al., Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor, J. Biol. Chem. 278 (2003) 8460-8467. http://doi.org/10.1074/jbc.M208518200.

[45]

M. Alikhani, C.M. MacLellan, M. Raptis, et al., Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor, American Journal of Physiology-Cell Physiology 292 (2007) C850-C856. https://doi.org/10.1152/ajpcell.00356.2006.

[46]

A. Umeno, V. Biju, Y. Yoshida, In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes, Free Radical Res. 51 (2017) 413-427. https://doi.org/10.1080/10715762.2017.1315114.

[47]

A. Bierhaus, M.A. Hofmann, R. Ziegler, et al., AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. Ⅰ. The AGE concept, Cardiov. Res. 37 (1998) 586-600. https://doi.org/10.1016/S0008-6363(97)00233-2.

[48]

T. Yuan, T. Yang, H. Chen, et al., New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis, Redox Biol. 20 (2019) 247-260. https://doi.org/10.1016/j.redox.2018.09.025.

Food Science and Human Wellness
Pages 1991-2000
Cite this article:
Miao L, Zhang H, Cheong MS, et al. Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells. Food Science and Human Wellness, 2023, 12(6): 1991-2000. https://doi.org/10.1016/j.fshw.2023.03.021

826

Views

76

Downloads

20

Crossref

19

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 26 June 2021
Revised: 12 July 2021
Accepted: 22 July 2021
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return