AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ginsenoside F1 administration promotes UCP1-dependent fat browning and ameliorates obesity-associated insulin resistance

Yuhan Meng1Weili Li1Chenxing HuSi ChenHaiyang LiFeifei BaiLujuan ZhengYe YuanYuying Fan( )Yifa Zhou( )
Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China

1 These authors contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance. Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia. Ginsenoside is a natural active component in Panax ginseng C.A. Meyer, and some of them enhance thermogenesis. However, there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis. Using thermogenic protein uncoupling protein 1 (UCP1)-luciferase reporter assay, we identified ginsenoside F1 as a novel UCP1 activator in the ginsenosides library. Using pull down assay and inhibitor interference, we found F1 binds to β3-adrenergic receptors (β3-AR) to enhance UCP1 expression via cAMP/PKA/CREB pathway. We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice, including body weight, body composition and energy expenditure. The results of proteomics showed that F1 significantly up-regulated thermogenesis proteins and lipolytic proteins, but down-regulated fatty acid synthesis proteins. Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifically by promoting the browning of white adipose tissue in obese mice. Additionally, ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes, and shows a stronger mitochondria respiration ability than norepinephrine. These findings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.

References

[1]

E.K. Steven, L.H. Rebecca, K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes, Nature 444 (2006) 840-846. https://doi.org/10.1038/nature05482.

[2]

L.P. Kozak, R. Anunciado-Koza, UCP1: its involvement and utility in obesity, Int. J Obesity 32 (2008) 32-38. https://doi.org/10.1038/ijo.2008.236.

[3]

I.G. Shabalina, N. Petrovic, J.M. Jong, et al., UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic, Cell Rep. 5 (2013) 1196-1203. https://doi.org/10.1016/j.celrep.2013.10.044.

[4]

R. Zechner, R. Zimmermann, T.O. Eichmann, et al., FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling, Cell Metab. 15 (2012) 279-291. https://doi.org/10.1016/j.cmet.2011.12.018.

[5]

J. Himms Hagen, S. Hogan, G. Zaror Behrens, Increased brown adipose tissue thermogenesis in obese (ob/ob) mice fed a palatable diet, Am. J Physiol. 250 (1986) 274-281. https://doi.org/10.1152/ajpendo.1986.250.3.e274.

[6]

C.S. Wood, R.J. Valentino, S.K. Wood, Individual differences in the locus coeruleus-norepinephrine system: Relevance to stress-induced cardiovascular vulnerability, Physiol. Behav. 172 (2016) 40-48. https://doi.org/10.1016/j.physbeh.2016.07.008.

[7]

A.G. Marangou, F.P. Alford, G. Ward, et al., Hormonal effects of norepinephrine on acute glucose disposal in humans: a minimal model analysis, Metabolism 37 (1988) 885-891. https://doi.org/10.1016/0026-0495(88)90124-2.

[8]

B. Cannon, J. Nedergaard, Brown adipose tissue: function and physiological significance, Physiol. Rev. 84 (2004) 277-359. https://doi.org/10.1152/physrev.00015.2003.

[9]

C.C. Ruan, Z. Liu, X. Li, et al., Isolation and characterization of a new ginsenoside from the fresh root of Panax Ginseng, Molecules 15 (2010) 2319-2325. https://doi.org/10.3390/molecules15042319.

[10]

X.M. Piao, Y. Huo, J.P. Kang, et al., Diversity of ginsenoside profiles produced by various processing technologies, Molecules 25 (2020) 4390. https://doi.org/10.3390/molecules25194390.

[11]

X. Yang, J. Zou, H. Cai, et al., Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPβ/NF-κB signaling, Biomed. Pharmacother. 96 (2017) 1240-1245. https://doi.org/10.1016/j.biopha.2017.11.092.

[12]

Y. Fan, N. Wang, A. Rocchi, et al., Identification of natural products with neuronal and metabolic benefits through autophagy induction, Autophagy 13 (2016) 41-56. https://doi.org/10.1080/15548627.2016.1240855.

[13]

Y. Zhu, C. Zhu, H. Yang, et al., Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice, Pharmacol. Res. 155 (2020) 104746. https://doi.org/10.1016/j.phrs.2020.104746.

[14]

S. Lim, J. Park, J. Um, Ginsenoside Rb1 induces beta 3 adrenergic receptor-dependent lipolysis and thermogenesis in 3T3-L1 adipocytes and db/db mice, Front. Endocrinol. 10 (2019) 1154. https://doi.org/10.3389/fphar.2019.01154.

[15]

M. Yoon, L. Huang, J. Choi, et al., Antinociceptive effect of intrathecal ginsenosides through alpha-2 adrenoceptors in the formalin test of rats, Br. J Anaesth. 106 (2011) 371-379. https://doi.org/10.1093/bja/aeq367.

[16]

S. Yang, J. Yan, L. Yang, et al., Alkali-soluble polysaccharides from mushroom fruiting bodies improve insulin resistance, Int. J Biol. Macromol. 126 (2019) 466-474. https://doi.org/10.1016/j.ijbiomac.2018.12.251.

[17]

X. Yu, L. Ye, H. Zhang, et al., Ginsenoside Rb1 ameliorates liver fat accumulation by upregulating perilipin expression in adipose tissue of db/db obese mice, J Ginseng Res. 39 (2015) 199-205. https://doi.org/10.1016/j.jgr.2014.11.004.

[18]

X. Li, H. Gong, S. Yang, et al., Pectic bee pollen polysaccharide from Rosa rugosa alleviates diet-induced hepatic steatosis and insulin resistance via induction of AMPK/mTOR-mediated autophagy, Molecules 22 (2017) 699. https://doi.org/10.3390/molecules22050699.

[19]

M.J. Betz, S. Enerbäck, Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease, Nat. Rev. Endocrinol. 14 (2017) 77-87. https://doi.org/10.1038/nrendo.2017.132.

[20]

J. Liu, Y. Wang, L. Lin, Small molecules for fat combustion: targeting obesity, Acta Pharm. Sin. B 9 (2019) 220-236. https://doi.org/10.1016/j.apsb.2018.09.007.

[21]

E.T. Chouchani, L. Kazak, B.M. Spiegelman, New advances in adaptive thermogenesis: UCP1 and beyond, Cell Metab. 29 (2019) 27-37. https://doi.org/10.1016/j.cmet.2018.11.002.

[22]

H.Y. Chen, Q. Liu, A.M. Salter, et al., Synergism between cAMP and PPARγ signalling in the initiation of UCP1 gene expression in HIB1B brown adipocytes, PPAR Res. 2013 (2013) 476049. https://doi.org/10.1155/2013/476049.

[23]

H. Li, J. Qi, L. Li, Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis, Pharmacol. Res. 147 (2019) 104393. https://doi.org/10.1016/j.phrs.2019.104393.

[24]

E.H. Lee, S.Y. Cho, S.J. Kim, et al., Ginsenoside F1 protects human HaCaT keratinocytes from ultraviolet-B-induced apoptosis by maintaining constant levels of Bcl-2, J Invest. Dermatol. 121 (2003) 607-613. https://doi.org/10.1046/j.1523-1747.2003.12425.x.

[25]

J. Han, E. Lee, E. Kim, et al., Role of epidermal γδ T-cell-derived interleukin 13 in the skin-whitening effect of Ginsenoside F1, Exp. Dermatol. 23 (2014) 860-862. https://doi.org/10.1111/exd.12531.

[26]

J. Zhang, M. Liu, M. Huang, et al., Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway, Pharmacol. Res. 144 (2019) 292-305. https://doi.org/10.1016/j.phrs.2019.04.021.

[27]

I. Abe, F. Islam, A. Lam, Glucose intolerance on phaeochromocytoma and paraganglioma-the current understanding and clinical perspectives, Front. Endocrinol. 11 (2020) 593780. https://doi.org/10.3389/fendo.2020.593780.

[28]

M. Davis, L. Camacho, M. Anderson, et al., Chronically elevated norepinephrine concentrations lower glucose uptake in fetal sheep, Am. J Physiol. Regul. Integr. Comp. Physiol. 319 (2020) 255-263. https://doi.org/10.1152/ajpregu.00365.2019.

[29]

N. Khoury, J. McGill, Changes in insulin sensitivity following administration of the clinically used low-dose pressor, norepinephrine, Diabetes Metab. Res. Rev. 27 (2011) 604-608. https://doi.org/10.1002/dmrr.1212.

[30]

A. Mulder, C. Tack, A. Olthaar, et al., Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes by inhibiting GLUT4 translocation, Am. J Physiol. Endocrinol. Metab. 289 (2005) 627-633. https://doi.org/10.1152/ajpendo.00079.2004.

[31]

M. Okla, J. Kim, K. Koehler, et al., Dietary factors promoting brown and beige fat development and thermogenesis, Adv. Nut. 8 (2017) 473-483. https://doi.org/10.3945/an.116.014332.

[32]

N. Suárez Zamorano, S. Fabbiano, C. Chevalier, et al., Microbiota depletion promotes browning of white adipose tissue and reduces obesity, Nat. Med. 21 (2015) 1497-1501. https://doi.org/10.1038/nm.3994.

Food Science and Human Wellness
Pages 2061-2072
Cite this article:
Meng Y, Li W, Hu C, et al. Ginsenoside F1 administration promotes UCP1-dependent fat browning and ameliorates obesity-associated insulin resistance. Food Science and Human Wellness, 2023, 12(6): 2061-2072. https://doi.org/10.1016/j.fshw.2023.03.025

670

Views

42

Downloads

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 09 December 2021
Revised: 17 January 2022
Accepted: 22 March 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return