AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism

William T. Moorea,bJing LuoaDongmin Liua,c( )
Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg 24060, USA
Department of Biology and Chemistry, Liberty University, Lynchburg 24515, USA
Department of Human Nutrition, Foods and Exercise, Virginia Tech, 1981 Kraft Drive, Corporate Research Center, Blacksburg 24061, USA

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Insulin resistance is a hallmark of type-2 diabetes (T2D) pathogenesis. Because skeletal muscle (SkM) is the major tissue for insulin-mediated glucose disposal, insulin resistance in SkM is considered a major risk factor for developing T2D. Thus, the identification of compounds that enhance the ability of SkM to take up glucose is a promising strategy for preventing T2D. Our previous work showed that kaempferol, a flavonol present in many foods, improves insulin sensitivity in obese mice, however, the mechanism underlying this beneficial action remains unclear. Here, we show that kaempferol directly stimulates glucose uptake and prevents lipotoxicity-impaired glucose uptake in primary human SkM. Kaempferol stimulates Akt phosphorylation in a time-dependent manner in human SkM cells. The effect of kaempferol on glucose uptake was blunted by inhibition of glucose transporter 4, phosphoinositide 3-kinase (PI3K), or AMPK. In addition, kaempferol induced AMPK phosphorylation, and inhibition of AMPK prevented kaempferol-stimulated Akt phosphorylation. In vivo, kaempferol administration induced rapid glucose disposal accompanied with increased Akt and AMPK phosphorylation in SkM tissue of the mice. Taken together, these findings suggest that kaempferol stimulates glucose uptake in SkM via an AMPK/Akt dependent mechanism, and it may be a viable therapeutic agent for insulin resistance.

References

[1]
CDC (2021). Diabetes basics. https://www.cdc.gov/diabetes/basics/index.html.
[2]

H. King, R.E. Aubert, W.H. Herman, Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections, Diabetes Care 21(1998) 1414-1431. https://doi.org/10.2337/diacare.21.9.1414.

[3]

D.A. Stoffers, The development of beta-cell mass: recent progress and potential role of GLP-1, Horm. Metab. Res. 36(2004) 811-821. https://doi.org/10.1055/s-2004-826168.

[4]

I. Cozar-Castellano, N. Fiaschi-Taesch, T.A. Bigatel, et al., Molecular control of cell cycle progression in the pancreatic beta-cell, Endocr. Rev. 27(2006) 356-370. https://doi.org/10.1210/er.2006-0004.

[5]

A.E. Butler, J. Janson, S. Bonner-Weir, et al., Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes, Diabetes 52(2003) 102-110. https://doi.org/10.2337/diabetes.52.1.102.

[6]

R.A. DeFronzo, D. Tripathy, skeletal muscle insulin resistance is the primary defect in type 2 diabetes, Diabetes Care 32(2009) S157-S163. https://doi.org/10.2337/dc09-S302.

[7]

J.P. Barlow, T.P. Solomon, Do skeletal muscle-secreted factors influence the function of pancreatic beta-cells? Am. J. Physiol. Endocrinol. Metab. 314(2018) E297-E307. https://doi.org/10.1152/ajpendo.00353.2017.

[8]

K. Bouzakri, H.A. Koistinen, J.R. Zierath, Molecular mechanisms of skeletal muscle insulin resistance in type 2 diabetes, Curr. Diabetes. Rev. 1(2005) 167-174. https://doi.org/10.2174/1573399054022785.

[9]

R.A. DeFronzo, E. Jacot, E. Jequier, et al., The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization, Diabetes, 30(1981) 1000-1007. https://doi.org/10.2337/diab.30.12.1000.

[10]

D. Thiebaud, D. Jacot, R.A. DeFronzo, et al., The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man, Diabetes, 31(1982) 957-963. https://doi.org/10.2337/diacare.31.11.957.

[11]

R. Zamora-Ros, V. Knaze, I. Romieu, et al., Impact of thearubigins on the estimation of total dietary flavonoids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, Eur. J. Clin. Nutr. 67(2013) 779-782. https://doi.org/10.1038/ejcn.2013.89.

[12]

J.M. Calderón-Montaño, E. Burgos-Morón, C. Pérez-Guerrero, et al., A review on the dietary flavonoid kaempferol, Mini Rev. Med. Chem. 11(2011) 298-344. https://doi.org/10.2174/138955711795305335.

[13]

S.H. Hakkinen, S.O. Karenlampi, I.M. Heinonen, et al., Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries, J. Agric. Food Chem. 47(1999) 2274-2279. https://doi.org/10.1021/jf9811065.

[14]

Z. Wang, N. Wang, X. Han, et al., Interaction of two flavonols with fat mass and obesity-associated protein investigated by fluorescence quenching and molecular docking, J. Biomol. Struct. Dyn. 36(2018) 3388-3397. https://doi.org/10.1080/07391102.2017.1388287.

[15]

J. Fan, M.H. Johnson, M.A. Lila, et al., Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: implications in diabetes management, Evid. Based. Complement Alternat. Med. 2013(2013) 479505 https://doi.org/10.1155/2013/479505.

[16]

K.S. Suh, E.M. Choi, M. Kwon, et al., Kaempferol attenuates 2-deoxy-d-ribose- induced oxidative cell damage in MC3T3-E1 osteoblastic cells, Biol. Pharm. Bull. 32(2009) 746-749. https://doi.org/10.1248/bpb.32.746.

[17]

Y. Zhang, W. Zhen, P. Maechler, et al., Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB, The J. of Nutr. Biochem. 24(2013) 638-646. https://doi.org/10.1016/j.jnutbio.2012.03.008.

[18]

I. Crespo, M.V. Garcia-Mediavilla, B. Gutierrez, et al., A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells, Br. J. Nutr. 100(2008) 968-976. https://doi.org/10.1017/S0007114508966083.

[19]

D. Torres-Villarreal, A. Camacho-Morales, H. Catro, et al., Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells, J. Physiol. Biochem. 75(2019) 83-88. https://doi.org/10.1007/s13105-018-0659-4.

[20]

R. Olszanecki, B. Bujak-Gizycka, J. Madej, et al., Kaempferol, but not resveratrol inhibits angiotensin converting enzyme, J. Physiol. Pharmacol. 59(2008) 387-392.

[21]

M.R. Loizzo, A. Said, R. Tundis, et al., Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae), Phytother. Res. 21(2007) 32-36. https://doi.org/10.1002/ptr.2008.

[22]

Y. Zhang, A.Y. Chen, M. Li, et al., Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells, J. Surg. Res. 148(2008) 17-23. S0022-4804. https://doi.org/10.1016/j.jss.2008.02.036.

[23]

I. Mylonis, A. Lakka, A. Tsakalof, et al., The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions., Biochem. Biophys. Res. Commun. 398(2010) 74-78. https://doi.org/10.1016/j.bbrc.2010.06.038.

[24]

W.S. da-Silva, J.W. Harney, B.W. Kim, et al., The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation, Diabetes 56(2007) 767-776. https://doi.org/10.2337/db06-1488.

[25]

H. Alkhalidy, W. Moore, A. Wang, et al., Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice, J. Nutr. Biochem. 58(2018) 90-101. https://doi.org/10.1016/j.jnutbio.2018.04.014.

[26]

H. Alkhalidy, W. Moore, Y. Zhang, et al., Small molecule kaempferol promotes insulin sensitivity and preserved pancreatic beta -cell mass in middle-aged obese diabetic mice, J. Diabetes Res. 2015 (2015) 532984. https://doi.org/10.1155/2015/532984.

[27]

Q.C. Chen, W.Y. Zhang, W. Jin, et al., Flavonoids and isoflavonoids from Sophorae Flos improve glucose uptake in vitro, Planta Med. 76(2010) 79-81. https://doi.org/10.1055/s-0029-1185944.

[28]

G. Boden, X. Chen, J. Ruiz, et al., Mechanisms of fatty acid- induced inhibition of glucose uptake, J. Clin. Invest. 93(1994) 2438-2446. https://doi.org/10.1172/JCI117252.

[29]

M. Roden, T.B. Price, G. Perseghin, et al., Mechanism of free fatty acid-induced insulin resistance in humans, J. Clin. Invest. 97(1996) 2859-2865. https://doi.org/10.1172/JCI118742.

[30]

M. Roden, M. Krssak, H. Stingl, et al., Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans, Diabetes 48(1999) 358-364. https://doi.org/10.2337/diabetes.48.2.358.

[31]

A. Dresner, D. Laurent, M. Marcucci, et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity, J. Clin. Invest. 103(1999) 253-259. https://doi.org/10.1172/JCI5001.

[32]

P. Shah, A. Vella, A. Basu, et al., Effects of free fatty acids and glycerol on splanchnic glucose metabolism and insulin extraction in nondiabetic humans, Diabetes 51(2002) 301-310. https://doi.org/10.2337/diabetes.51.2.301.

[33]

L. Sylow, M. Kleinert, C. Pehmoller, et al., Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal. 26(2014) 323-331. https://doi.org/10.1016/j.cellsig.2013.11.007.

[34]

I. Bernal-Sore, M. Navarro-Marquez, C. Osorio-Fuentealba, et al., Mifepristone enhances insulin-stimulated Akt phosphorylation and glucose uptake in skeletal muscle cells, Mol. Cell Endocrinol. 461(2018) 277-283. https://doi.org/10.1016/j.mce.2017.09.028.

[35]

T. Ijuin, T. Takenawa, Regulation of insulin signaling and glucose transporter 4 (GLUT4) exocytosis by phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase, skeletal muscle, and kidney enriched inositol polyphosphate phosphatase (SKIP), J. Biol. Chem. 287(2012) 6991-6999. https://doi.org/10.1074/jbc.M111.335539.

[36]

R. Tao, J. Gong, X. Luo, et al., AMPK exerts dual regulatory effects on the PI3K pathway, J. Mol. Signal. 5(2010) 1. https://doi.org/10.1186/1750-2187-5-1.

[37]

B. Sears, M. Perry, The role of fatty acids in insulin resistance, Lipids Health Dis. 14(2015) 121. https://doi.org/10.1186/s12944-015-0123-1.

[38]

G. Boden, Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver, Curr. Diab. Rep. 6(2006) 177-181. https://doi.org/10.1007/s11892-006-0031-x.

[39]

G.R. Steinberg, B.E. Kemp, AMPK in health and disease, Physiol. Rev. 89(2009) 1025-1078. https://doi.org/10.1152/physrev.00011.2008.

[40]

B.B. Zhang, G. Zhou, C. Li, AMPK: an emerging drug target for diabetes and the metabolic syndrome, Cell Metab. 9(2009) 407-416. https://doi.org/10.1016/j.cmet.2009.03.012.

[41]

R. Bergeron, S.F. Previs, G.W. Cline, et al., Effect of 5-aminoimidazole-4- carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats, Diabetes 50(2001) 1076-1082. https://doi.org/10.2337/diabetes.50.5.1076.

[42]

S.B. Jorgensen, J.F. Wojtaszewski, B. Viollet, et al., Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle, FASEB J. 19(2005) 1146-1148. https://doi.org/10.1096/fj.04-3144fje.

[43]

B.F. Holmes, E.J. Kurth-Kraczek, W.W. Winder Chronic activation of 5'-AMP- activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle, J. Appl. Physiol. 87(1999) 1990-1995. https://doi.org/10.1152/jappl.1999.87.5.1990.

[44]

T. Ploug, B. van Deurs, H. Ai, et al., Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions, J. Cell Biol. 142(1998) 1429-1446. https://doi.org/10.1083/jcb.142.6.1429.

[45]

P.G. Foran, L.M. Fletcher, P.B. Oatey, et al., Protein kinase B stimulates the translocation of GLUT4 but not GLUT1 or transferrin receptors in 3T3-L1 adipocytes by a pathway involving SNAP-23, synaptobrevin-2, and/or cellubrevin, J. Biol. Chem. 274(1999) 28087-28095. https://doi.org/10.1074/jbc.274.40.28087.

[46]

Q.L. Zhou, J.G. Park, Z.Y. Jiang, et al., Analysis of insulin signaling by RNAi- based gene silencing, Biochem. Soc. Trans. 32(1999) 817-821. https://doi.org/10.1042/BST0320817.

[47]

G.D. Cartee, AMPK-TBC1D4-dependent mechanism for increasing insulin sensitivity of skeletal muscle, Diabetes 64(2015) 1901-1903. https://doi.org/10.2337/db15-0010.

[48]

R. Kjobsted, N. Munk-Hansen, J.B. Birk, et al., Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK, Diabetes 66(2017) 598-612. https://doi.org/10.2337/db16-0530.

[49]

N. Ouchi, H. Kobayashi, S. Kihara, et al., Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells, J. Biol. Chem. 279(2004) 1304-1309. https://doi.org/10.1074/jbc.M310389200.

[50]

S.L. Longnus, C. Segalen, J. Giudicelli, et al., Insulin signaling downstream of protein kinase B is potentiated by 5'AMP-activated protein kinase in rat hearts in vivo, Diabetologia 48(2005) 2591-2601. http://doi.org/10.1007/s00125-005-0016-3.

[51]

F. Han, C.F. Li, Z. Cai, et al., The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance, Nat. Commun. 9(2018) 4728. https://doi.org/10.1038/s41467-018-07188-9.

[52]

S. Yamaguchi, H. Katahira, S. Ozawa, et al., Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes, Am. J. Physiol. Endocrinol. Metab. 289(2005) E643-649. https://doi.org/10.1152/ajpendo.00456.2004.

[53]

E.J. Kurth-Kraczek, M.F. Hirshman, L.J. Goodyear, et al., 5’ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle, Diabetes 48(1999) 1667-1671. https://doi.org10.2337/diabetes.48.8.1667.

[54]

B. Klop, J.W. Elte, M.C. Cabezas, Dyslipidemia in obesity: mechanisms and potential targets, Nutrients 5(2013) 1218-1240. https://doi.org/10.3390/nu5041218.

[55]

Y.S. Lee, B.Y. Cha, K. Yamaguchi, et al., Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice, Cytotechnology 62(2010) 367-376. https://doi.org/10.1007/s10616-010-9288-7.

[56]

J.Y. Kim, L.A. Nolte, P.A. Hansen, et al., High-fat diet-induced muscle insulin resistance: relationship to visceral fat mass, Am. J. Physiol. Regul. Integr. Comp. Physiol. 279(2000) R2057-2065. https://doi.org/10.1152/ajpregu.2000.279.6.R2057.

[57]

K.E. Trajcevski, H.M. O’Neill, D.C. Wang, et al., Enhanced lipid oxidation and maintenance of muscle insulin sensitivity despite glucose intolerance in a diet-induced obesity mouse model, PLoS One 8(2013) e71747. https://doi.org/10.1371/journal.pone.0071747.

[58]

P.H. Albers, A.J. Pedersen, J.B. Birk, et al., Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes, Diabetes 64(2015) 485-497. https://doi.org/10.2337/db14-0590.

[59]

R.M. Murphy, Enhanced technique to measure proteins in single segments of human skeletal muscle fibers: fiber-type dependence of AMPK-alpha1 and -beta1, J. Appl. Physiol. 110(2001) 820-825. https://doi.org/10.1152/japplphysiol.01082.2010.

[60]

S.A. Hawley, D.A. Pan, K.J. Mustard, et al., Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell Metab. 2(2005) 9-19. https://doi.org/10.1016/j.cmet.2005.05.009.

[61]

A. Woods, K. Dickerson, R. Heath, et al., Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metab. 2(2005) 21-33. https://doi.org/10.1016/j.cmet.2005.06.005.

[62]

Z. Liu, C. Cui, P. Xu, et al., Curcumin activates AMPK pathway and regulates lipid metabolism in rats following prolonged clozapine exposure, Front. Neurosci. 11(2017) 558. https://doi.org/10.3389/fnins.2017.00558.

[63]

C. Jimenez-Sanchez, M. Olivares-Vicente, C. Rodriguez-Perez, et al., AMPK modulatory activity of olive-tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach, PLoS One 12(2017) e0173074. https://doi.org/10.1371/journal.pone.0173074.

[64]

S.A. Hawley, F.A. Ross, C. Chevtzoff, et al., Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab. 11(2010) 554-565. https://doi.org/10.1016/j.cmet.2010.04.001.

[65]

S. Rigacci, C. Miceli, C. Nediani, et al., Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight, Oncotarget 6(2015) 35344-35357. https://doi.org/10.18632/oncotarget.6119.

[66]

A. Barve, C. Chen, V. Hebbar, et al., Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats, Biopharm. Drug Dispos. 30(2009) 356-365. https://dio.org/10.1002/bdd.677.

[67]

M.S. DuPont, A.J. Day, R.N. Bennett, et al., Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans, Eur. J. Clin. Nutr. 58(2004) 947-954. https://doi.org/10.1038/sj.ejcn.1601916.

Food Science and Human Wellness
Pages 2087-2094
Cite this article:
Moore WT, Luo J, Liu D. Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism. Food Science and Human Wellness, 2023, 12(6): 2087-2094. https://doi.org/10.1016/j.fshw.2023.03.028

630

Views

33

Downloads

5

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 22 February 2022
Revised: 10 March 2022
Accepted: 23 March 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return