AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Integrative proteomic-transcriptomic analysis revealed the lifestyles of Lactobacillus paracasei H4-11 and Kluyveromyces marxianus L1-1 under co-cultivation conditions

Na Liua,b,cLikang Qina( )Haiying ZengaAnyan WenaSong Miaoc( )
School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Compared with the rice-acid soup inoculated with single starter, the synergistically intensified rice-acid soup inoculated with Lactobacillus paracasei H4-11 (L. paracasei H4-11) and Kluyveromyces marxianus L1-1 (K. marxianus L1-1) contained more flavor compounds. Organic acids mainly included L-lactic acid and the main volatile flavor component was ethyl acetate. Moreover, the signal intensity of astringency and bitterness and the total concentration of volatile sulfur compounds were reduced. The combined analysis results of RNA sequencing (RNA-seq) technology and 4D label-free quantitative (4D LFQ) proteomics explained the flavor formation pathways in rice-acid soup inoculated with L. paracasei H4-11 and K. marxianus L1-1. In L. paracasei H4-11, L-lactate dehydrogenase, phosphoglucomutase, acetate kinase, alcohol dehydrogenase and acetyl-CoA were up-regulated and D-lactate dehydrogenase and N-Acetyltransferase were down-regulated. In K. marxianus L1-1, Acetyl-CoA, acetaldehyde dehydrogenase, acyl-coenzyme A, N-acetyltransferase, and L-lactate dehydrogenase were up-regulated and hexokinase, alcohol dehydrogenase, and alcohol O-acetyltransferase were down-regulated. The above up-regulation and down-regulation synergistically promoted the formation of characteristic flavor compounds (mainly L-lactic acid and ethyl acetate). Enzyme-linked immunoassay (ELISA) and parallel reaction monitoring (PRM) quantitative analysis respectively verified that 5 key metabolic enzymes and 27 proteins in L. paracasei H4-11 and K. marxianus L1-1 were associated with the characteristic flavor of rice-acid soup, as confirmed by the quantitative results of 4D LFQ.

References

[1]

N. Liu, J. Pan, S. Miao, et al., Microbial community in Chinese traditional fermented acid rice soup (rice-acid) and its correlations with key organic acids and volatile compounds, Food Res. Int. 137 (2020) 109672. https://doi.org/10.1016/j.foodres.2020.109672.

[2]

N. Liu, L. Qin, X. Lu, et al., Physicochemical components and flavor properties of acid rice soup (rice-acid) fermented with Lactobacillus paracasei and/or Kluyveromyces marxianus, Food Biosci. 43 (2021) 101278. https://doi.org/10.1016/j.fbio.2021.101278.

[3]

E. Salvetti, H.M. Harris, G.E. Felis, et al., Comparative genomics reveals robust phylogroups in the genus Lactobacillus as the basis for reclassification, Appl. Environ. Microbiol. 84 (2018) e00993-18. https://doi.org/10.1128/AEM.00993-18.

[4]

N. Lertwattanasakul, T. Kosaka, A. Hosoyama, et al., Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses, Biotechnol. Biofuels. 8 (2015) 47. https://doi.org/10.1186/s13068-015-0227-x.

[5]

R. Wang, D. Wang, X. Gao, et al., Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and Alpha-amylase to produce ethanol, Biotechnol. Progr. 30 (2014) 338-347. https://doi.org/10.1002/btpr.1877.

[6]

P. Li, X. Fu, M. Chen, et al., Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation, Biotechnol. Biofuels. 12 (2019) 1-13. https://doi.org/10.1186/s13068-019-1390-2.

[7]

D. Xu, J. Behr, A.J. Geißler, et al., Label-free quantitative proteomic analysis reveals the lifestyle of Lactobacillus hordei in the presence of Sacchromyces cerevisiae, Int. J. Food. Microbiol. 294 (2019) 18-26. https://doi.org/10.1016/j.ijfoodmicro.2019.01.010.

[8]

M. Pan, R. Barrangou, Combining omics technologies with CRISPR-based genome editing to study food microbes, Curr. Opin. Biotech. 61 (2020) 198-208. https://doi.org/10.1016/j.copbio.2019.12.027.

[9]

S. Jordan, M. I. Hutchings, T. Mascher, Cell envelope stress response in Gram-positive bacteria. FEMS. Microbiol. Rev. 32 (2008) 107-146. https://doi.org/10.1111/j.1574-6976.2007.00091.x.

[10]

M. Galland, R. Huguet, E. Arc, et al., Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination, Mol, Cell. Proteomics. 13 (2014) 252-268. https://doi.org/10.1074/mcp.M113.032227.

[11]

R.K. Suarez, C.D. Moyes, Metabolism in the age of ‘omes’, J. Exp. Biol. 215 (2012) 2351-2357. https://doi.org/10.1242/jeb.059725.

[12]

X. Fu, P. Li, L. Zhang, et al., Understanding the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation based on integration of RNA-Seq and metabolite data, Appl. Microbiol. Biotechnol. 103 (2019) 2715-2729. https://doi.org/10.1007/s00253-019-09637-x.

[13]

X. Ma, G. Wang, Z. Zhai, et al., Global transcriptomic analysis and function identification of malolactic enzyme pathway of Lactobacillus paracasei L9 in response to bile stress, Front. Microbiol. 9 (2018) 1978. https://doi.org/10.3389/fmicb.2018.01978.

[14]

A. Palud, H. Scornec, J. F. Cavin, et al., New genes involved in mild stress response identified by transposon mutagenesis in Lactobacillus paracasei, Front. Microbiol. 9 (2018) 535. https://doi.org/10.3389/fmicb.2018.00535.

[15]

N. Liu, L. Qin, S. Miao, Regulatory mechanisms of L-lactic acid and taste substances in Chinese acid rice soup (rice-acid) fermented with a Lacticaseibacillus paracasei and Kluyveromyces marxianus, Front. Microbiol. 12 (2021) 594631. https://doi.org/10.3389/fmicb.2021.594631.

[16]

N. Liu, L. Qin, M. Mazhar, et al., Integrative transcriptomic-proteomic analysis revealed the flavor formation mechanism and antioxidant activity in rice-acid inoculated with Lactobacillus paracasei and Kluyveromyces marxianus, J. Proteomics. 238 (2021) 104158. https://doi.org/10.1016/j.jprot.2021.104158.

[17]

N. Liu, L. Qin, L. Hu, et al., Formation mechanisms of ethyl acetate and organic acids in Kluyveromyces marxianus L1-1 in Chinese acid rice soup, Food Sci. Hum. Well. 12 (2023) 45-56. http://doi.org/10.1016/j.fshw.2023.04.034.

[18]

C.E. Basson, J.H. Groenewald, J. Kossmann, et al., Sugar and acid-related quality attributes and enzyme activities in strawberry fruits: Invertase is the main sucrose hydrolysing enzyme, Food Chem. 121 (2010) 1156-1162. https://doi.org/10.1016/j.foodchem.2010.01.064.

[19]

J.C. Wang, W.Y. Zhang, Z. Zhong, et al., Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk, J. Ind. Microbiol. Biotechnol. 39 (2021) 191-206. https://doi.org/10.1007/s10295-011-1015-7.

[20]

R.J. DeBerardinis, T. Cheng, Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer, Oncogene 29 (2010) 313-324. https://doi.org/10.1038/onc.2009.358.

[21]

T. Kimura, I. Sugahara, K. Hayashi, et al., Primary metabolic pathway of methylamine in Methylophaga sp. AA-30, Agric. Biol. Chem. 54 (1990) 2819-2826. https://doi.org/10.1080/00021369.1990.10870440.

[22]

W. Mu, T. Zhang, B. Jiang, An overview of biological production of L-theanine, Biotechnol. Adv. 33 (2015) 335-342. https://doi.org/10.1016/j.biotechadv.2015.04.004.

[23]

J. Zhu, K. Shimizu, The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli, Appl. Microbiol. Biotechnol. 64 (2004) 367-375. https://doi.org/10.1007/s00253-003-1499-9.

[24]

Y. Huang, Z. Yi, Y. Jin, et al., Metatranscriptomics reveals the functions and enzyme profiles of the microbial community in Chinese nong-flavor liquor starter, Front. Microbiol. 8 (2017) 1747. https://doi.org/10.3389/fmicb.2017.01747.

[25]

A.L. Carroll, S.H. Desai, S. Atsumi, Microbial production of scent and flavor compounds, Curr. Opin. Biotech. 37 (2016) 8-15. https://doi.org/10.1016/j.copbio.2015.09.003.

[26]

A.R. de Olmos, M.S. Garro, Metabolic profile of Lactobacillus paracasei subsp. paracasei CRL 207 in solid state fermentation using commercial soybean meal, Food Biosci. 35 (2020) 100584. https://doi.org/10.1016/j.fbio.2020.100584.

[27]

M.V. Lara, C.O. Budde, L. Porrini, et al., Peach (Prunus persica) fruit response to anoxia: reversible ripening delay and biochemical changes, Plant Cell Physiol. 52 (2011) 392-403. https://doi.org/10.1093/pcp/pcq200.

[28]

K. Petrov, L. Popova, P. Petrova, High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei, Appl. Microbiol. Biotechnol. 101 (2017) 4433-4445. https://doi.org/10.1007/s00253-017-8238-0.

[29]

J. Lopez, T. Kerley, L. Jenkinson, et al., Odorants from the thermal treatment of hydrolyzed mushroom protein and cysteine enhance saltiness perception, J. Agric. Food Chem. 67 (2019) 11444-11453. https://doi.org/10.1021/acs.jafc.9b04153.

[30]

D. Wüthrich, C. Wenzel, T. Bavan, et al., Transcriptional regulation of cysteine and methionine metabolism in Lactobacillus paracasei FAM18149, Front. Microbiol. 9 (2018) 1261. https://doi.org/10.3389/fmicb.2018.01261.

[31]

A. Alberti, P. Goffrini, I. Ferrero, et al., Cloning and characterization of the lactate-specific inducible gene KlCYB2, encoding the cytochrome b2 of Kluyveromyces lactis, Yeast 16 (2000) 657-665. https://doi.org/10.1002/(SICI)1097-0061(200005)16:73.0.CO;2-#.

[32]

B. Guiard, Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: the yeast L(+)-lactate cytochrome c oxidoreductase (cytochrome b2), EMBO J. 4 (1985) 3265-3272. https://doi.org/10.1089/dna.1985.4.469.

[33]

D. Wang, D. Wu, X. Yang, et al., Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance, RSC Adv. 8 (2018) 14177-14192. https://doi.org/10.1039/C8RA00335A.

[34]

M. Klein, Y. M. Mamnun, T. Eggmann, et al., The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast, Febs Lett. 520 (2002) 63-67. https://doi.org/10.1016/S0014-5793(02)02767-9.

[35]

A. Madhavan, A. Srivastava, A. Kondo, et al., Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae, Crit. Rev. Biotechnol. 32 (2012) 22-48. https://doi.org/10.3109/07388551.2010.539551.

[36]

R.H. S. Diniz, J. C. Villada, M.C.T. Alvim, et al., Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress, Appl. Microbiol. Biotechnol. 101 (2017) 6969-6980. https://doi.org/10.1007/s00253-017-8432-0.

[37]

E. Hofmann, K. Eschrich, W. Schellenberger, Temporal organization of the phosphofructokinase/fructose-1, 6-bisphosphatase cycle, Adv. Enzyme Regul. 23 (1985) 331-362. https://doi.org/10.1016/0065-2571(85)90055-X.

[38]

R.G. Sanchez, B. Hahn-Hägerdal, M.F. Gorwa-Grauslund, PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae, Microb. Cell Factories. 9 (2010) 40. https://doi.org/10.1186/1475-2859-9-40.

[39]

K. Weinhandl, M. Winkler, A. Glieder, et al., Carbon source dependent promoters in yeasts, Microb. Cell Factories. 13 (2014) 5. https://doi.org/10.1186/1475-2859-13-5.

[40]

J.M. Thevelein, S. Hohmann, Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem. Sci. 20 (1995) 3-10. https://doi.org/10.1016/S0968-0004(00)88938-0.

[41]

S. P. Singh, J. S. Jadaun, L. K. Narnoliya, et al., Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity, Appl. Biochem. Biotechnol. 183 (2017) 613-635. https://doi.org/10.1007/s12010-017-2605-2.

[42]

M. Oleksy, E. Klewicka, Exopolysaccharides produced by Lactobacillus sp.: biosynthesis and applications, Crit. Rev. Food Sci. Nutr. 58 (2018) 450-462. https://doi.org/10.1080/10408398.2016.1187112.

[43]

J. Koponen, K. Laakso, K. Koskenniemi, et al., Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG, J. Proteomics. 75 (2012) 1357-1374. https://doi.org/10.1016/j.jprot.2011.11.009.

[44]

C. Collar, C.S. Martinez, Amino acid profiles of fermenting wheat sour doughs, J. Food Sci. 58 (1993) 1324-1328. https://doi.org/10.1111/j.1365-2621.1993.tb06175.x.

[45]

M.R. Bajec, G.J. Pickering, Astringency: mechanisms and perception, Crit Rev. Food Sci. Nutr. 48 (2008) 858-875. https://doi.org/10.1080/10408390701724223.

[46]

M.A. Joslyn, J.L. Goldstein, Astringency of fruits and fruit products in relation to phenolic content, Adv. Food Res. 13 (1964) 179-217. https://doi.org/10.1016/S0065-2628(08)60101-9.

[47]

A. Economou, Bacterial protein translocase: a unique molecular machine with an army of substrates, FEBS Lett. 476 (2000) 18-21. https://doi.org/10.1016/S0014-5793(00)01662-8.

[48]

C. Löser, T. Urit, P. Keil, et al., Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422, Appl. Microbiol. Biotechnol. 99 (2015) 1131-1144. https://doi.org/10.1007/s00253-014-6098-4.

[49]

R.T. Kushi, R. Monti, J. Contiero, Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus, J. Ind. Microbiol. Biot. 25 (2000) 63-69. https://doi.org/10.1038/sj.jim.7000032.

[50]

K.S. Kim, H.S. Yun, Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae, Enzyme Microb. Technol. 39 (2006) 496-500. https://doi.org/10.1016/j.enzmictec.2005.12.020.

[51]

M.R. Lopes, C.J. de Souza, M.Q. Rodrigues, et al., Production and characterization of β-glucanase secreted by the yeast Kluyveromyces marxianus, Appl. Biochem. Biotechnol. 172 (2014) 2412-2424. https://doi.org/10.1007/s12010-013-0683-3.

[52]

M.C.T. Alvim, C.E. Vital, E. Barros, et al., Ethanol stress responses of Kluyveromyces marxianus CCT 7735 revealed by proteomic and metabolomic analyses, Anto. N. Leeuw. 112 (2019) 827-845. https://doi.org/10.1007/s10482-018-01214-y.

[53]

C.C. Franklin, D.S. Backos, I. Mohar, et al., Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase, Mol. Aspects. Med. 30 (2009) 86-98. https://doi.org/10.1016/j.mam.2008.08.009.

[54]

A. Guranowski, A. de Diego, A. Sillero, et al., Uridine 5′-polyphosphates (p4U and p5U) and uridine (5(idpolyphospho (5yphospho (5s (p4UpnNs) can be synthesized by UTP: glucose-1-phosphate uridylyltransferase from Saccharomyces cerevisiae, FEBS Lett. 561 (2004) 83-88. https://doi.org/10.1016/s0014-5793(04)00126-7.

[55]

S.B. Kim, D.H. Kwon, J.B. Park, et al., Alleviation of catabolite repression in Kluyveromyces marxianus: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose, Biotechnol. Biofuels. 12 (2019) 90. https://doi.org/10.1186/s13068-019-1431-x.

[56]
E.A. Stonehouse, J.E.E. Mcbride, K.M. Deleault, et al., U.S. Patent Application No. 16/616 (2020) 306.
Food Science and Human Wellness
Pages 2195-2210
Cite this article:
Liu N, Qin L, Zeng H, et al. Integrative proteomic-transcriptomic analysis revealed the lifestyles of Lactobacillus paracasei H4-11 and Kluyveromyces marxianus L1-1 under co-cultivation conditions. Food Science and Human Wellness, 2023, 12(6): 2195-2210. https://doi.org/10.1016/j.fshw.2023.03.032

524

Views

16

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 10 April 2022
Revised: 26 May 2022
Accepted: 27 July 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return