AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Verbascoside exerts an anti-atherosclerotic effect by regulating liver glycerophospholipid metabolism

Peng Leia,1Jialin Lüa,1Tie YaoaPeng ZhangaXin ChaiaYuefei WangaMiaomiao Jianga,b( )
State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

1 These authors contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Verbascoside, abundant in olive mill wastewater, is a phenylethanolic glycoside with a wide range of pharmacological activities. Atherosclerosis (AS) is a common metabolic disease and abnormal lipid metabolism in liver is inseparable from its formation and development. In this study, the anti-atherosclerotic effect of verbascoside was evaluated by establishing an atherosclerosis model based on western diet feeding of apolipoprotein E-deficient mice for 16 weeks. After 12 weeks of administration during the feeding period, the levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) in the plasma of mice were significantly decreased, the formation of arterial plaques was delayed, and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) in plasma were alleviated, showing the hepatoprotective effect. In addition, based on untargeted lipidomic analysis, verbascoside stabilized glycerophospholipid metabolism, modulated lipid metabolism disorders and reduced lipid deposition in the liver to achieve the therapeutic efficacy against atherosclerosis by regulating cardiolipin (CL), ether-linked phosphatidylcholine (ether-PC), lysophophatidylcholine (LPC), phosphatidylcholine (PC), oxidized phosphatidylcholine (OxPC), oxidized phosphatidylethanolamine (OxPE), triacylglycerol (TG), sphingomyelin (SM) back to normal levels.

References

[1]

F. Gomez-Delgado, N. Katsiki, J. Lopez-Miranda, P. Perez-Martinez, Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns, Crit. Rev. Food Sci. Nutr. 61 (2021) 1651-1669. https://doi.org/10.1080/10408398.2020.1764487.

[2]

J. Gutiérrez-Cuevas, A. Sandoval-Rodriguez, A. Meza-Rios, et al., Molecular mechanisms of obesity-linked cardiac dysfunction: an up-date on current knowledge, Cells. 10 (2021) 629. https://doi.org/10.3390/cells10030629.

[3]

A. Pirillo, M. Casula, E. Olmastroni, et al., Global epidemiology of dyslipidaemias, Nat. Rev. Cardiol. 18 (2021) 689-700. https://doi.org/10.1038/s41569-021-00541-4.

[4]

W. Wang, M. Hu, H. Liu, et al., Global burden of disease study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease, Cell Metab. 33 (2021) 1943-1956.e2. https://doi.org/10.1016/J.CMET.2021.08.005.

[5]

J. Hippisley-Cox, C. Coupland, Unintended effects of statins in men and women in England and Wales: population based cohort study using the QResearch database, BMJ. 340 (2010) 1232. https://doi.org/10.1136/bmj.c2197.

[6]

R. Collins, C. Reith, J. Emberson, et al., Interpretation of the evidence for the efficacy and safety of statin therapy, Lancet. 388 (2016) 2532-2561. https://doi.org/10.1016/S0140-6736(16)31357-5.

[7]

A.A. Carter, T. Gomes, X. Camacho, et al., Risk of incident diabetes among patients treated with statins: Population based study, BMJ. 346 (2013) f2610. https://doi.org/10.1136/bmj.f2610.

[8]

D. Latek, E. Rutkowska, S. Niewieczerzal, et al., Drug-induced diabetes type 2: in silico study involving class B GPCRs, PLoS ONE. 14 (2019) e0208892. https://doi.org/10.1371/journal.pone.0208892.

[9]

J.A. Sáez, M.D. Pérez-Murcia, A. Vico, et al., Olive mill wastewater-evaporation ponds long term stored: integrated assessment of in situ bioremediation strategies based on composting and vermicomposting, J. Hazard. Mater. 402 (2021) 123481. https://doi.org/10.1016/j.jhazmat.2020.123481.

[10]

P. Diamantopoulou, C. Gardeli, S. Papanikolaou, impact of olive mill wastewaters on the physiological behavior of a wild-type new Ganoderma resinaceum isolate, Environ. Sci. Pollut. Res. 28 (2021) 20570-20585. https://doi.org/10.1007/s11356-020-11835-4.

[11]

A. Albini, M.M.G. Festa, N. Ring, D. Baci, et al., A Polyphenol-rich extract of olive mill wastewater enhances cancer chemotherapy effects, while mitigating cardiac toxicity, Front. Pharmacol. 12 (2021) 694762. https://doi.org/10.3389/fphar.2021.694762.

[12]

M. Carrara, M.T. Kelly, F. Roso, M. Larroque, et al., Potential of olive oil mill wastewater as a source of polyphenols for the treatment of skin disorders: a review, J. Agric. Food Chem. 69 (2021) 7268-7284. https://doi.org/10.1021/acs.jafc.1c00296.

[13]

M. Bellumori, L. Cecchi, A. Romani, et al., Recovery and stability over time of phenolic fractions by an industrial filtration system of olive mill wastewaters: a three-year study, J. Sci. Food Agric. 98 (2018) 2761-2769. https://doi.org/10.1002/jsfa.8772.

[14]

R. Abbattista, G. Ventura, C.D. Calvano, et al., Bioactive compounds in waste by-products from olive oil production: Applications and structural characterization by mass spectrometry techniques, Foods. 10 (2021) 10061236. https://doi.org/10.3390/foods10061236.

[15]

K. Alipieva, L. Korkina, I.E. Orhan, et al., Verbascoside: a review of its occurrence, (bio)synthesis and pharmacological significance, Biotechnol. Adv. 32 (2014) 1065-1076. https://doi.org/10.1016/j.biotechadv.2014.07.001.

[16]

H. Wang, J. Feng, F. Ao, et al., Tumor-derived exosomal microRNA-7-5p enhanced by verbascoside inhibits biological behaviors of glioblastoma in vitro and in vivo, Mol. Ther. Oncolytics. 20 (2021) 569-582. https://doi.org/10.1016/j.omto.2020.12.006.

[17]

M. Sabti, K. Sasaki, C. Gadhi, et al., Elucidation of the molecular mechanism underlying Lippia citriodora(Lim.)-induced relaxation and anti-depression, Int. J. Mol. Sci. 20 (2019) 3556. https://doi.org/10.3390/ijms20143556.

[18]

Y.Q. Li, Y. Chen, S.Q. Jiang, et al., An inhibitor of NF-κB and an agonist of AMPK: Network prediction and multi-omics integration to derive signaling pathways for acteoside against alzheimer’s disease, Front. Cell Dev. Biol. 9 (2021) 652310. https://doi.org/10.3389/fcell.2021.652310.

[19]

E. Esposito, R. Dal Toso, G. Pressi, et al., Protective effect of verbascoside in activated C6 glioma cells: Possible molecular mechanisms, Naunyn. Schmiedebergs. Arch. Pharmacol. 381 (2010) 93–105. https://doi.org/10.1007/s00210-009-0466-0.

[20]

V.A. Kostyuk, A.I. Potapovich, T.O. Suhan, et al., Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation, Eur. J. Pharmacol. 658 (2011) 248–256. https://doi.org/10.1016/j.ejphar.2011.02.022.

[21]

K. Zhu, Z. Meng, Y. Tian, et al., Hypoglycemic and hypolipidemic effects of total glycosides of Cistanche tubulosa in diet/streptozotocin-induced diabetic rats, J. Ethnopharmacol. 276 (2021) 113991. https://doi.org/10.1016/j.jep.2021.113991.

[22]

S. Wen, Y. Chen, J. Lu, et al., Modulation of hepatic lipidome by rhodioloside in high-fat diet fed apolipoprotein E knockout mice, Phytomedicine. 69 (2020). https://doi.org/10.1016/j.phymed.2018.09.225.

[23]

L. Hodson, Hepatic fatty acid synthesis and partitioning: The effect of metabolic and nutritional state, Proc. Nutr. Soc. 78 (2019) 126–134. https://doi.org/10.1017/S0029665118002653.

[24]

A. Ferramosca, V. Zara, Modulation of hepatic steatosis by dietary fatty acids, World J. Gastroenterol. 20 (2014) 1746–1755. https://doi.org/10.3748/wjg.v20.i7.1746.

[25]

S. Softic, D.E. Cohen, C.R. Kahn, Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease, Dig. Dis. Sci. 61 (2016) 1282–1293. https://doi.org/10.1007/s10620-016-4054-0.

[26]

D. Niederseer, B. Wernly, E. Aigner, et al., NAFLD and cardiovascular diseases: epidemiological, mechanistic and therapeutic considerations, J. Clin. Med. 10 (2021) 467. https://doi.org/10.3390/jcm10030467.

[27]

B.K. Koo, M.A. Allison, M.H. Criqui, et al., The association between liver fat and systemic calcified atherosclerosis, J. Vasc. Surg. 71 (2020) 204-211.e4. https://doi.org/10.1016/j.jvs.2019.03.044.

[28]

V.T. Dang, A. Huang, L.H. Zhong, et al., Comprehensive plasma metabolomic analyses of atherosclerotic progression reveal alterations in glycerophospholipid and sphingolipid metabolism in apolipoprotein e-deficient mice, Sci. Rep. 6 (2016) 35037. https://doi.org/10.1038/srep35037.

[29]

Y. Chen, S. Wen, M. Jiang, et al., Atherosclerotic dyslipidemia revealed by plasma lipidomics on ApoE−/− mice fed a high-fat diet, Atherosclerosis. 262 (2017) 78-86. https://doi.org/10.1016/j.atherosclerosis.2017.05.010.

[30]

U. Igbavboa, J. Hamilton, H.Y. Kim, et al., A new role for apolipoprotein E: Modulating transport of polyunsaturated phospholipid molecular species in synaptic plasma membranes, J. Neurochem. 80 (2002) 255-261. https://doi.org/10.1046/j.0022-3042.2001.00688.x.

[31]

I. Tabas, Cholesterol and phospholipid metabolism in macrophages, Biochim. Biophys. Acta-Mol. Cell Biol. Lipids. 1529 (2000) 164-174. https://doi.org/10.1016/S1388-1981(00)00146-3.

[32]

E.E. Williams, J.A. Cooper, W. Stillwell, et al., The curvature and cholesterol content of phospholipid bilayers alter the transbilayer distribution of specific molecular species of phosphatidylethanolamine, Mol. Membr. Biol. 17 (2000) 157-164. https://doi.org/10.1080/09687680050197383.

[33]

Y. Huang, R.W. Mahley, Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases, Neurobiol. Dis. 72 (2014) 3-12. https://doi.org/10.1016/j.nbd.2014.08.025.

[34]

A.D. Marais, Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease, Pathology. 51 (2019) 165-176. https://doi.org/10.1016/j.pathol.2018.11.002.

[35]

D. Salnikova, V. Orekhova, A. Grechko, et al., Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis, Int. J. Mol. Sci. 22 (2021) 8990. https://doi.org/10.3390/ijms22168990.

[36]

S.J. Jeong, J.G. Park, G.T. Oh, Peroxiredoxins as potential targets for cardiovascular disease, Antioxidants. 10 (2021) 081244. https://doi.org/10.3390/antiox10081244.

[37]

A.V. Poznyak, E.E. Bezsonov, T.V. Popkova, et al., Immunity in atherosclerosis: Focusing on t and b cells, Int. J. Mol. Sci. 22 (2021). https://doi.org/10.3390/ijms22168379.

[38]

E.S. Gasanoff, L.S. Yaguzhinsky, G. Garab, Cardiolipin, non-bilayer structures and mitochondrial bioenergetics: relevance to cardiovascular disease, Cells. 10 (2021) 1721. https://doi.org/10.3390/cells10071721.

[39]

M. El-Hafidi, F. Correa, C. Zazueta, Mitochondrial dysfunction in metabolic and cardiovascular diseases associated with cardiolipin remodeling, Biochim. Biophys. Acta-Mol. Basis Dis. 1866 (2020) 165744. https://doi.org/10.1016/j.bbadis.2020.165744.

[40]

M.A. Kiebish, R. Bell, K. Yang, et al., Dynamic simulation of cardiolipin remodeling: Greasing the wheels for an interpretative approach to lipidomics, J. Lipid Res. 51 (2010) 2153–2170. https://doi.org/10.1194/jlr.M004796.

[41]

Y. Xu, R.I. Kelley, T.J.J. Blanck, et al., Remodeling of Cardiolipin by Phospholipid Transacylation, J. Biol. Chem. 278 (2003) 51380–51385. https://doi.org/10.1074/jbc.M307382200.

[42]

F. Dorninger, S. Forss-Petter, I. Wimmer, et al., Plasmalogens, platelet-activating factor and beyond: ether lipids in signaling and neurodegeneration, Neurobiol. Dis. 145 (2020). https://doi.org/10.1016/j.nbd.2020.105061.

[43]

R.A. Zoeller, A.C. Lake, N. Nagan, et al., Plasmalogens as endogenous antioxidants: Somatic cell mutants reveal the importance of the vinyl ether, Biochem. J. 338 (1999) 769–776. https://doi.org/10.1042/0264-6021:3380769.

[44]

T. Brosche, D. Platt, The biological significance of plasmalogens in defense against oxidative damage, Exp. Gerontol. 33 (1998) 363–369. https://doi.org/10.1016/S0531-5565(98)00014-X.

[45]

S. Paul, A.A.T. Smith, K. Culham, et al., Shark liver oil supplementation enriches endogenous plasmalogens and reduces markers of dyslipidemia and inflammation, J. Lipid Res. 62 (2021) 100092. https://doi.org/10.1016/J.JLR.2021.100092.

[46]

Z.A. Almsherqi, Potential role of plasmalogens in the modulation of biomembrane morphology, Front. Cell Dev. Biol. 9 (2021) 673917. https://doi.org/10.3389/fcell.2021.673917.

[47]

Y.A. Carpentier, O. Scruel, Changes in the concentration and composition of plasma lipoproteins during the acute phase response., Curr. Opin. Clin. Nutr. Metab. Care. 5 (2002) 153–158. https://doi.org/10.1097/00075197-200203000-00006.

[48]

L.K. Cole, J.E. Vance, D.E. Vance, Phosphatidylcholine biosynthesis and lipoprotein metabolism, Biochim. Biophys. Acta-Mol. Cell Biol. Lipids. 1821 (2012) 754-761. https://doi.org/10.1016/j.bbalip.2011.09.009.

[49]

A. Jonas, Lecithin cholesterol acyltransferase, Biochim. Biophys. Acta-Mol. Cell Biol. Lipids. 1529 (2000) 245–256. https://doi.org/10.1016/S1388-1981(00)00153-0.

[50]

P. Liu, W. Zhu, C. Chen, et al., The mechanisms of lysophosphatidylcholine in the development of diseases, Life Sci. 247 (2020) 117443. https://doi.org/10.1016/j.lfs.2020.117443.

[51]

J.J. Luo, H.X. Cao, R.X. Yang, et al., PNPLA3 rs139051 is associated with phospholipid metabolite profile and hepatic inflammation in nonalcoholic fatty liver disease, World J. Clin. Cases. 6 (2018) 355-364. https://doi.org/10.12998/wjcc.v6.i10.355.

[52]

H. Takahashi, T. Goto, Y. Yamazaki, K. Kamakari, et al., Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α, J. Lipid Res. 56 (2015) 254-265. https://doi.org/10.1194/jlr.M052464.

[53]

T.G. Huo, Y. Fang, Y.H. Zhang, et al., Liver metabonomics study on the protective effect of glycyrrhetinic acid against realgar-induced liver injury, Chin. J. Nat. Med. 18 (2020) 138-147. https://doi.org/10.1016/S1875-5364(20)30014-5.

[54]

O. Rozenberg, D.M. Shih, M. Aviram, Human serum paraoxonase 1 decreases macrophage cholesterol biosynthesis: Possible role for its phospholipase-A2-like activity and lysophosphatidylcholine formation, Arterioscler. Thromb. Vasc. Biol. 23 (2003) 461-467. https://doi.org/10.1161/01.ATV.0000060462.35946.B3.

[55]

M. Rosenblat, J. Vaya, D. Shih, et al., Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: A possible role for lysophosphatidylcholine, Atherosclerosis. 179 (2005) 69-77. https://doi.org/10.1016/j.atherosclerosis.2004.10.028.

[56]

M. Yamamoto, H. Hara, T. Adachi, The expression of extracellular-superoxide dismutase is increased by lysophosphatidylcholine in human monocytic U937 cells, Atherosclerosis. 163 (2002) 223-228. https://doi.org/10.1016/S0021-9150(02)00007-2.

[57]

N.D. Hung, D.E. Sok, M.R. Kim, Prevention of 1-palmitoyl lysophosphatidylcholine-induced inflammation by polyunsaturated acyl lysophosphatidylcholine, Inflamm. Res. 61 (2012) 473-483. https://doi.org/10.1007/s00011-012-0434-x.

[58]

O.A. Akerele, S.K. Cheema, Fatty acyl composition of lysophosphatidylcholine is important in atherosclerosis, Med. Hypotheses. 85 (2015) 754-760. https://doi.org/10.1016/j.mehy.2015.10.013.

[59]

G.Y. Liu, S.H. Moon, C.M. Jenkins, et al., Synthesis of oxidized phospholipids by sn-1 acyltransferase using 2–15-HETE lysophospholipids, J. Biol. Chem. 294 (2019) 10146-10159. https://doi.org/10.1074/jbc.RA119.008766.

[60]

V.N. Bochkov, O.V. Oskolkova, K.G. Birukov, et al., Generation and biological activities of oxidized phospholipids, Antioxidants Redox Signal. 12 (2010) 1009-1059. https://doi.org/10.1089/ars.2009.2597.

[61]

R. Li, K.P. Mouillesseaux, D. Montoya, et al., Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC, Circ. Res. 98 (2006) 642-650. https://doi.org/10.1161/01.RES.0000207394.39249.fc.

[62]

M. Sharma, A. Von Zychlinski-Kleffmann, C.M. Porteous, et al., Lipoprotein (a) upregulates ABCA1 in liver cells via scavenger receptor-B1 through its oxidized phospholipids, J. Lipid Res. 56 (2015) 1318-1328. https://doi.org/10.1194/jlr.M056150.

[63]

I. Mendel, N. Yacov, A. Shoham, et al., Treatment with oxidized phospholipids directly inhibits nonalcoholic steatohepatitis and liver fibrosis without affecting steatosis, Dig. Dis. Sci. 61 (2016) 2545-2553. https://doi.org/10.1007/s10620-016-4159-5.

[64]

S. Hirashio, T. Ueno, T. Naito, et al., Characteristic kidney pathology, gene abnormality and treatments in LCAT deficiency, Clin. Exp. Nephrol. 18 (2014) 189-193. https://doi.org/10.1007/s10157-013-0895-4.

[65]

A.R. Tall, Plasma high density lipoproteins. Metabolism and relationship to atherogenesis, J. Clin. Invest. 86 (1990) 379-384. https://doi.org/10.1172/JCI114722.

[66]

F. Huang, K. Wang, J. Shen, Lipoprotein-associated phospholipase A2: the story continues, Med. Res. Rev. 40 (2020) 79-134. https://doi.org/10.1002/med.21597.

[67]

G.K. Marathe, C. Pandit, C.L. Lakshmikanth, et al., To hydrolyze or not to hydrolyze: the dilemma of platelet-activating factor acetylhydrolase, J. Lipid Res. 55 (2014) 1847-1854. https://doi.org/10.1194/jlr.R045492.

[68]

B. Wang, P. Tontonoz, Phospholipid remodeling in physiology and disease, Annu. Rev. Physiol. 81 (2019) 165-188. https://doi.org/10.1146/annurev-physiol-020518-114444.

[69]

J. Liu, R. Kang, D. Tang, Signaling pathways and defense mechanisms of ferroptosis, FEBS J. (2021) 7038-7050. https://doi.org/10.1111/febs.16059.

[70]

J.Y. Lee, W.K. Kim, K.H. Bae, et al., Lipid metabolism and ferroptosis, Biology (Basel). 10 (2021) 1651-1669. https://doi.org/10.3390/biology10030184.

Food Science and Human Wellness
Pages 2314-2323
Cite this article:
Lei P, Lü J, Yao T, et al. Verbascoside exerts an anti-atherosclerotic effect by regulating liver glycerophospholipid metabolism. Food Science and Human Wellness, 2023, 12(6): 2314-2323. https://doi.org/10.1016/j.fshw.2023.03.035

744

Views

30

Downloads

11

Crossref

10

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 17 September 2021
Revised: 20 December 2021
Accepted: 20 January 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return